S p stability of solutions of symmetric stochastic differential equations with discontinuous driving semimartingales

Vigirdas Mackevičius

Annales de l'I.H.P. Probabilités et statistiques (1987)

  • Volume: 23, Issue: 4, page 575-592
  • ISSN: 0246-0203

How to cite

top

Mackevičius, Vigirdas. "$S^p$ stability of solutions of symmetric stochastic differential equations with discontinuous driving semimartingales." Annales de l'I.H.P. Probabilités et statistiques 23.4 (1987): 575-592. <http://eudml.org/doc/77305>.

@article{Mackevičius1987,
author = {Mackevičius, Vigirdas},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {stability; stochastic integral equation; cadlag semi-martingale},
language = {eng},
number = {4},
pages = {575-592},
publisher = {Gauthier-Villars},
title = {$S^p$ stability of solutions of symmetric stochastic differential equations with discontinuous driving semimartingales},
url = {http://eudml.org/doc/77305},
volume = {23},
year = {1987},
}

TY - JOUR
AU - Mackevičius, Vigirdas
TI - $S^p$ stability of solutions of symmetric stochastic differential equations with discontinuous driving semimartingales
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1987
PB - Gauthier-Villars
VL - 23
IS - 4
SP - 575
EP - 592
LA - eng
KW - stability; stochastic integral equation; cadlag semi-martingale
UR - http://eudml.org/doc/77305
ER -

References

top
  1. [1] M.-F. Allain, Sur quelques types d'approximations des solutions d'équations différentielles stochastiques, Thèse, Université de Rennes, 1974. 
  2. [2] C. Dellacherie and P.-A. Meyer, Probabilités et Potentiel, Hermann, Paris, 1980. Zbl0464.60001MR488194
  3. [3] H. Doss, Liens entre équations différentielles stochastiques et ordinaires, Ann. Inst. Henri Poincaré, T. 13, n° 2, 1977, pp. 99-125. Zbl0359.60087MR451404
  4. [4] M. Emery, Stabilité des solutions des equations différentielles stochastiques: application aux intégrales multiplicatives stochastiques, Z. Wahrsch. v. Geb., T. 41, No. 3, 1978, pp. 241-262. Zbl0351.60054MR464400
  5. [5] M. Emery, Equations différentielles lipschitziennes: étude de la stabilité, Lect. Notes in Mathematics, T. 721, 1979, pp. 281-293. Zbl0408.60064MR544801
  6. [6] M.I. Freedman and J.C. Willems, Smooth Representation of Systems with Differentiated Inputs, I.E.E.E. Trans. Aut. Control, T. AC-23, 1978, pp. 16-21. Zbl0376.93024MR482999
  7. [7] B. Grigelionis and R. Mikulevicius, Stochastic Evolution Equations and Densities of the Conditional Distributions, Lect. Notes in Control and Inf. Sc., T. 49, 1984, pp. 49-88. Zbl0513.60058MR799933
  8. [8] N. Ikeda, S. Nakao and Y. Yamato, A Class of Approximations of Brownian Motion, Publ. Res. Inst. Math. Sc., T. 13, No. 1, 1977, pp. 285-300. Zbl0391.60055MR458587
  9. [9] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North Holland-Kodansha, Amsterdam-Tokyo, 1981. Zbl0495.60005MR637061
  10. [10] F. Konecny, On Wong-Zakai Approximation of Stochastic Differential Equations, J. Multivariate Anal, T. 13, No. 4, 1983, pp. 605-611. Zbl0535.60053MR727043
  11. [11] A.J. Krener, A Formal Approach to Stochastic Integration and Differential Equations, Stochastics, T. 3, 1979, pp. 105-125. Zbl0435.60051MR553908
  12. [12] V. Mackevičius, Sp Stability of Solutions of Symmetric Stochastic Differential Equations, Lietuvos Matematikos Rinkinys, T. 25, No. 4, 1985, pp. 72-84 (in Russian). English translation to appear in Lithuanian Math. J. Zbl0659.60086MR823204
  13. [13] S.I. Marcus, Modeling and Approximation of Stochastic Differential Equations Driven by Semimartingales, Stochastics, T. 4, No. 3, 1981, pp. 223-245. Zbl0456.60064MR605630
  14. [14] E.J. Mcshane, Stochastic Calculus and Stochastic Models, Academic Press, New York, 1974. Zbl0292.60090MR443084
  15. [15] E.J. Mcshane, Stochastic Differential Equations, J. Multivariate Anal., T. 5, 1975, pp. 121-177. Zbl0323.60059MR373006
  16. [16] M. Metivier and J. Pellaumail, Stochastic Integration, Academic Press, New York, 1980. Zbl0463.60004MR578177
  17. [17] M. Metivier and J. Pellaumail, On a Stopped Doob's Inequality and General Stochastic Equations, Ann. Probab., T. 8, No. 1, 1980, pp. 96-114. Zbl0426.60059MR556417
  18. [18] P.-A. Meyer, Un cours sur les intégrales stochastiques, Lect. Notes in Math., T. 511, 1976, pp. 245-400. Zbl0374.60070MR501332
  19. [19] P.-A. Meyer, Inégalités de normes pour les intégrales stochastiques, Lect. Notes in Math., T. 649, 1978, pp. 757-762. Zbl0382.60050MR520043
  20. [20] S. Nakao and Y. Yamato, Approximation Theorem on Stochastic Differential Equations, Proc. Internat. Symp., S.D.E., Kyotô, 1976, pp. 283-296. Zbl0443.60051MR536015
  21. [21] P. Protter, Hp Stability of Solutions of Stochastic Differential Equations, Z. Wahrsch. v. Geb., T. 44, 1978, pp. 337-352. Zbl0378.60042MR509206
  22. [22] P. Protter, Approximations of Solutions of Stochastic Differential Equations Driven by Semimartingales, Ann. Probab., T. 13, No. 3, 1985, pp. 716-743. Zbl0578.60055MR799419
  23. [23] H.J. Sussmann, On the Gap Between Deterministic and Stochastic Ordinary Differential Equations, Ann. Probab., T. 6, 1978, pp. 19-41. Zbl0391.60056MR461664
  24. [24] E. Wong and M. Zakai, On the Convergence of Ordinary Integrals to Stochastic Integrals, Ann. Math. Statist., T. 36, No. 5, 1965, pp. 1560-1564. Zbl0138.11201MR195142

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.