Asymptotically minimax estimation of a constrained Poisson vector via polydisc transforms

Iain M. Johnstone; K. Brenda Macgibbon

Annales de l'I.H.P. Probabilités et statistiques (1993)

  • Volume: 29, Issue: 2, page 289-319
  • ISSN: 0246-0203

How to cite

top

Johnstone, Iain M., and Macgibbon, K. Brenda. "Asymptotically minimax estimation of a constrained Poisson vector via polydisc transforms." Annales de l'I.H.P. Probabilités et statistiques 29.2 (1993): 289-319. <http://eudml.org/doc/77458>.

@article{Johnstone1993,
author = {Johnstone, Iain M., Macgibbon, K. Brenda},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {vector of independent Poisson variates; information normalized loss function; minimax risk; asymptotically minimax estimators; polydisk transform; principal eigenvalue; Laplace operator; -dimensional Poisson estimation; -dimensional Gaussian estimation},
language = {eng},
number = {2},
pages = {289-319},
publisher = {Gauthier-Villars},
title = {Asymptotically minimax estimation of a constrained Poisson vector via polydisc transforms},
url = {http://eudml.org/doc/77458},
volume = {29},
year = {1993},
}

TY - JOUR
AU - Johnstone, Iain M.
AU - Macgibbon, K. Brenda
TI - Asymptotically minimax estimation of a constrained Poisson vector via polydisc transforms
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1993
PB - Gauthier-Villars
VL - 29
IS - 2
SP - 289
EP - 319
LA - eng
KW - vector of independent Poisson variates; information normalized loss function; minimax risk; asymptotically minimax estimators; polydisk transform; principal eigenvalue; Laplace operator; -dimensional Poisson estimation; -dimensional Gaussian estimation
UR - http://eudml.org/doc/77458
ER -

References

top
  1. J.O. Berger, Statistical Decision Theory and Bayesian Analysis, 2nd. ed., Springer Verlag, New York, 1985. Zbl0572.62008MR804611
  2. P.E. Berkin and B.Ya. Levit, Second-Order Asymptotically Minimax Estimates for the Mean of a Normal Population, Problemy Peredachi Informatsii, Vol. 16, 3, 1980, pp. 60-79. Translation: Problems of Information Transmission, 1981, pp. 212-229. Zbl0466.62033MR624030
  3. P.J. Bickel, Minimax Estimation of the Mean of a Normal Distribution when the Parameter Space is Restricted, Ann. Statist., Vol. 9, 1981, pp. 1301-1309. Zbl0484.62013MR630112
  4. L.D. Brown, Admissible Estimators, Recurrent Diffusions and Insoluble Boundary Value Problems, Ann. Math. Statist., Vol. 42, 1971, pp. 855-903. Correction, Ann. Statist., Vol. 1, pp. 594-596. Zbl0246.62016MR286209
  5. L.D. Brown, An Heuristic Method for Determining Admissibility of Estimators - with Applications, Ann. Statist., Vol. 7, 1979, pp. 960-994. Zbl0414.62011MR536501
  6. M. Clevenson and J. Zidek, Simultaneous Estimation of the Mean of Independent Poisson Laws, J. Amer. Statist. Assoc., Vol. 70, 1975, pp. 698-705. Zbl0308.62018MR394962
  7. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1, Interscience Publishers, New York, 1953. Zbl0051.28802MR65391
  8. E.N. Dancer, The Effect of Domain Shape on the Number of Positive Solutions of Certain Nonlinear Equations, J. Diff. Eq., Vol. 74, 1988, pp. 120-156. Zbl0662.34025MR949628
  9. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag, Berlin-Heidelberg, New York, 1983. Zbl0562.35001MR737190
  10. P.J. Huber, Robust Estimation of a Location Parameter, Ann. Math. Statist., 1964, Vol. 35, pp. 73-101. Zbl0136.39805MR161415
  11. P.J. Huber, Robust Statistics, Wiley, New York, 1981. Zbl0536.62025MR606374
  12. I.M. Johnstone, Admissible Estimation, Dirichlet Principles and Recurrence of Birth-Death Chains on Zp+, Prob. Theory and Related Fields (= Z. Wahrsch. Th.), Vol. 71, 1986, pp. 213-269. Zbl0592.62009
  13. I.M. Johnstone and K.B. Macgibbon, Une mesure d'information caractérisant la loi de Poisson, Séminaire de Probabilités, Vol. XXI, 1987, pp.563-573, Lecture Notes in Mathematics, Vol. 1247, J. AZEMA, P. A. MEYER and M. YOR Eds., Springer Verlag, New York. Zbl0621.60028MR942005
  14. I.M. Johnstone and K.B. Macgibbon, Minimax Estimation of a Constrained Poisson Vector, Ann. Statist., Vol. 20, 1992, pp. 807-831. Zbl0761.62006MR1165594
  15. O.A. Ladyzhenskaya and N.N. Ural'tseva, Linear and Quasilinear Elliptic Equations, English translation, New York, Academic Press, 1968 (2nd. Russian edition, 1973). Zbl0164.13002MR244627
  16. B.Ya. Levit, On Asymptotic Minimax Estimates of the Second Order, Translation: Theor. Prob. Appl., Vol. 25, 1980, pp. 552-568. Zbl0494.62035
  17. B.Ya. Levit, Minimax Estimation and Positive Solutions of Elliptic Equations, Translation: Theor. Prob. Appl., Vol. 27, 1982, pp. 563-586. Zbl0518.62031MR673924
  18. B.Ya. Levit, Second Order Asymptotic Optimality and Positive Solutions of Schrödinger's Equation, Translation: Theor. Prob. Appl., Vol. 30, 1985 a, pp. 333-363. Zbl0608.62035MR792622
  19. B.Ya. Levit, Evaluation of the Minimax Risk, Fourth International Vilnius Conf.Prob. Theory Math. Stat., Vol. 4, Vilnius, 1985 b, pp.181-183. 
  20. B.Ya. Levit, On Second Order Admissibility in Simultaneous Estimation, Proc. 1st World Congress Bernouilli Soc. Tashkent, U.S.S.R., 1986, Yu. A. PROHOROV and V. V. SAZONOV Eds., V.N.U. Sc. Press, Utrecht. Zbl0686.62017MR1092458
  21. M. Loève, Probability Theory I, Springer Verlag, New York, 1977. Zbl0359.60001MR651017
  22. A.A. Melkman and Y. Ritov, Minimax Estimation of the Mean of a General Distribution when the Parameter Space is Restricted, Ann. Statist., Vol. 15, 1987, pp. 432-442. Zbl0621.62030MR885749
  23. C. Miranda, Partial Differential Equations of Elliptic Type, 2nd. ed., Springer Verlag, New York, Heidelberg, 1970. Zbl0198.14101MR284700
  24. J.M. Steele, Fisher Information and Detection of a Euclidean Perturbation of an Independent Stationary Process, Ann. Prob., Vol. 14, 1986, pp. 326-335. Zbl0592.60033MR815974

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.