Une mesure d'information caractérisant la loi de Poisson

Iain M. Johnstone; Brenda Macgibbon

Séminaire de probabilités de Strasbourg (1987)

  • Volume: 21, page 563-573

How to cite

top

Johnstone, Iain M., and Macgibbon, Brenda. "Une mesure d'information caractérisant la loi de Poisson." Séminaire de probabilités de Strasbourg 21 (1987): 563-573. <http://eudml.org/doc/113615>.

@article{Johnstone1987,
author = {Johnstone, Iain M., Macgibbon, Brenda},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {information-theoretic proves of limit theorems; discrete analog of Fisher information measure; criterium for convergence of some discrete measures to the Poisson distribution},
language = {fre},
pages = {563-573},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Une mesure d'information caractérisant la loi de Poisson},
url = {http://eudml.org/doc/113615},
volume = {21},
year = {1987},
}

TY - JOUR
AU - Johnstone, Iain M.
AU - Macgibbon, Brenda
TI - Une mesure d'information caractérisant la loi de Poisson
JO - Séminaire de probabilités de Strasbourg
PY - 1987
PB - Springer - Lecture Notes in Mathematics
VL - 21
SP - 563
EP - 573
LA - fre
KW - information-theoretic proves of limit theorems; discrete analog of Fisher information measure; criterium for convergence of some discrete measures to the Poisson distribution
UR - http://eudml.org/doc/113615
ER -

References

top
  1. [ 1 ] Barron, A.R., Entropy and the central limit theorem, Annals of Probability14, (1986), 336-342. Zbl0599.60024MR815975
  2. [ 2 ] Bickel, P.J.et Freedman, D.A., Some asymptotic theory for the bootstrap, Ann. Statist.9 (1981), 1196-1217. Zbl0449.62034MR630103
  3. [ 3 ] Brown, L.D., A proof of the central limit theorem motivated by the Cramer-Rao Inequality, Statistics and Probability : Essays in Honor of C.R. Rao, Kallianpur, G. Krishnaian, P.R., Ghosh, J.K., eds.North-Holland (1982), 141-148. Zbl0484.60019MR659464
  4. [ 4 ] Dobrushin, R.L., Describing a system of random variables by conditional distributions, Theory Probab. Appl.15 (1970) 458-486. Zbl0264.60037
  5. [ 5 ] Dynkin E.B.et Yushekvich, A.A., Markov Processes; Theorems and Problems, Plenum Press, New York (1969). MR242252
  6. [ 6 ] Huber, P.J., Robust Statistics, John Wiley and Sons (1981). Zbl0536.62025MR606374
  7. [ 7 ] Kendall, D.G., Information theory and the limit theorem for Markov chains and processes with a countable infinity of states, Ann. Inst. Statist. Math.15, (1964), 137-143. Zbl0126.35901MR171317
  8. [ 8 ] Johnstone, I., Admissibility, difference equations and recurrence in estimating a Poisson mean, Ann. Statist.12, (1984), 1173-1198. Zbl0557.62006MR760682
  9. [ 9 ] Linnik, Y.V., An information-theoretic proof of the central limit theorem with the Lindeberg condition, Theory Probab. Applic.4 (1959), 288-299. Zbl0097.13103MR124081
  10. [10] Loève, M.M., Probability Theory, 3rd ed., Van Nostrand, Princeton (1963). Zbl0108.14202MR203748
  11. [11] Mallows, C.L., A note on asymptotic joint normality, Ann. Math. Statist.43, (1972), 508-515. Zbl0238.60017MR298812
  12. [12] McKean, H.P.Jr., Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas, Arch. Rational Mech. Anal.21 (1967), 343-367. Zbl1302.60049MR214112
  13. [13] Parthasarathy, K.R., Introduction to Probability and Measure, Springer, New York, (1977). Zbl0395.28001MR651013
  14. [14] Rényi, A., On measures of entropy and information, Proc. Fourth Berkeley Symposium on Mathematical Statistics and Probability, University of California PressBerkeley, 1 (1961), 541-561. Zbl0106.33001MR132570
  15. [15] Schmidt, E., Über die Charlier-Jordansche Entwicklung einer willkürlichen funktion nach der Poissonschen funktion und ihren Ableitungen, Ztschr. f. angew. Math. und Mech.13 (1933), 139-142. Zbl0006.30301JFM59.0310.02
  16. [16] Shannon C.E. et Weaver, W., The Mathematical Theory of Communications, Univ. of Illinois Press, Urbana (1949). Zbl0041.25804MR32134
  17. [17] Tanaka H., An inequality for a functional of probability distribution and its application to Kac's one-dimensional model of a Maxwellian gas, Z. Warsch. verw. Gebiete27 (1973), 47-52. Zbl0302.60005MR362442

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.