Inégalités de corrélation sur { - 1 , 1 } n et dans n

Étienne Laroche

Annales de l'I.H.P. Probabilités et statistiques (1993)

  • Volume: 29, Issue: 4, page 531-567
  • ISSN: 0246-0203

How to cite

top

Laroche, Étienne. "Inégalités de corrélation sur $ \lbrace -1, 1 \rbrace ^n$ et dans $\mathbb {R}^n$." Annales de l'I.H.P. Probabilités et statistiques 29.4 (1993): 531-567. <http://eudml.org/doc/77469>.

@article{Laroche1993,
author = {Laroche, Étienne},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {correlation inequalities; statistical mechanics},
language = {fre},
number = {4},
pages = {531-567},
publisher = {Gauthier-Villars},
title = {Inégalités de corrélation sur $ \lbrace -1, 1 \rbrace ^n$ et dans $\mathbb \{R\}^n$},
url = {http://eudml.org/doc/77469},
volume = {29},
year = {1993},
}

TY - JOUR
AU - Laroche, Étienne
TI - Inégalités de corrélation sur $ \lbrace -1, 1 \rbrace ^n$ et dans $\mathbb {R}^n$
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1993
PB - Gauthier-Villars
VL - 29
IS - 4
SP - 531
EP - 567
LA - fre
KW - correlation inequalities; statistical mechanics
UR - http://eudml.org/doc/77469
ER -

References

top
  1. [1] R.B. Griffiths, Correlations in Ising Ferromagnets I, II, J. of Math. Phys., vol. 8, 1967, p. 478-483; p. 484-489. 
  2. [2] D.G. Kelly et S. Sherman, General Griffiths' Inequalities on Correlations in Ising Ferromagnets, J. Math. Phys., vol. 9, 1968, p. 466-484. 
  3. [3] C. Fortuin, P. Kastelyn et J. Ginibre, Correlation Inequalities on some Partially Ordered Sets, Comm. in Math. Phys., vol. 22, 1971, p. 89-103. Zbl0346.06011MR309498
  4. [4] R.B. Griffiths, C.A. Hurst et S. Sherman, Concavity of Magnetization of an Ising Ferromagnet in a Positive External Field, J. Math. Phys., vol. 11, 1970, p. 790-795. MR266507
  5. [5] J.L. Lebowitz, GHS and other Inequalities, Comm. Math. Phys., vol. 35, 1974, p. 87- 92. MR339738
  6. [6] R.S. Ellis, Entropy and large Deviations in Statistical Mechanics, Springer-Verlag. Zbl0566.60097
  7. [7] H.O. Georgii, Gibbs Measures and Phase Transitions, de Gruyter studies in mathematics. Zbl0657.60122MR956646
  8. [8] J. Glimm et A. Jaff, Quantum Physics: a Functional Integral Point of View, Springer-Verlag, 1981. Zbl0461.46051MR628000
  9. [9] B. Simon, B, The P(φ)2 Euclidian (Quantum) Field Theory, Princeton Series, in Physics, 1974. Zbl1175.81146MR489552
  10. [10] D. Bakry et D. Michel, Sur les inégalités FKG, Preprint. 
  11. [11] I. Herbst et L. Pitt, Diffusion Equation Technique in Stochastic Monotonicity and Positive Correlations, Prob. Th. Rel. Fields, vol. 87, 1991, p. 275-312. Zbl0688.60062MR1084331
  12. [12] L.D. Pitt, Positively Correlated Normal Variables are Associated, Ann. of Prob., vol. 10, 1982, p. 496-499. Zbl0482.62046MR665603
  13. [13] R.S. Ellis et C.M. Newman, Necessary and Sufficient Conditions for the GHS Inequality with Applications to Analysis and Probability, Trans. Am. Math. Soc., 1978, p. 237. Zbl0412.35084MR492131
  14. [14] M.L. Eaton, Lectures on Topics in Probability Inequalities, CWI Tract. Centrum voor Wiskunde in Informatica, 1987. Zbl0622.60024MR889671
  15. [15] J.D. Esary, F. Proschan et D.W. Walkup, Association of Random Variables with Applications, Ann. Math. Stat., vol. 38, 1967, p. 1466-1474. Zbl0183.21502MR217826

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.