Random walk in a strongly inhomogeneous environment and invasion percolation

C. M. Newman; D. L. Stein

Annales de l'I.H.P. Probabilités et statistiques (1995)

  • Volume: 31, Issue: 1, page 249-261
  • ISSN: 0246-0203

How to cite

top

Newman, C. M., and Stein, D. L.. "Random walk in a strongly inhomogeneous environment and invasion percolation." Annales de l'I.H.P. Probabilités et statistiques 31.1 (1995): 249-261. <http://eudml.org/doc/77504>.

@article{Newman1995,
author = {Newman, C. M., Stein, D. L.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {inhomogeneous limit; invasion percolation; Wiener process; random walks},
language = {eng},
number = {1},
pages = {249-261},
publisher = {Gauthier-Villars},
title = {Random walk in a strongly inhomogeneous environment and invasion percolation},
url = {http://eudml.org/doc/77504},
volume = {31},
year = {1995},
}

TY - JOUR
AU - Newman, C. M.
AU - Stein, D. L.
TI - Random walk in a strongly inhomogeneous environment and invasion percolation
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1995
PB - Gauthier-Villars
VL - 31
IS - 1
SP - 249
EP - 261
LA - eng
KW - inhomogeneous limit; invasion percolation; Wiener process; random walks
UR - http://eudml.org/doc/77504
ER -

References

top
  1. [1] C. Kipnis and C.M. Newman, The metastable behavior of infrequently observed, weakly random, one-dimensional diffusion processes, SIAM J. Appl. Math., Vol. 45, 1985, pp. 972-982. Zbl0592.60063MR813459
  2. [2] C.M. Newman, J.E. Cohen and C. Kipnis, Neo-darwinian evolution implies punctuated equilibria, Nature, Vol. 315, 1985, pp. 400-401. 
  3. [3] R.G. Palmer and D.L. Stein, Broken ergodicity in glass, in Relaxation in Complex Systems, ed. K. L. Ngai and G. B. Wright, U.S. GPO, Washington, 1985, pp. 253-259. 
  4. [4] R.G. Palmer, D.L. Stein, E. Abrahams and P.W. Anderson, Models of hierarchically constrained dynamics for glassy relaxation, Phys. Rev. Lett., Vol. 53, 1984, pp. 958-961. 
  5. [5] A.T. Ogielski and D.L. Stein, Dynamics on ultrametric spaces, Phys. Rev. Lett., Vol. 55, 1985, pp. 1634-1637. MR804582
  6. [6] J. Jäckle, On the glass transition and the residual entropy of glasses, Philos. Mag., Vol. B44, 1981, pp. 533-545. 
  7. [7] R.G. Palmer, Broken ergodicity, Adv. Phys., Vol. 31, 1982, pp. 669-735. 
  8. [8] R. Kotecký and E. Olivieri, Droplet dynamics for asymmetric Ising model, J. Stat. Phys., Vol. 70, 1993, pp. 1121-1148. Zbl1081.82591MR1208633
  9. [9] R. Kotecký and E. Olivieri, Shapes of growing droplets - a model of escape from a metastable phase, J. Stat. Phys., Vol. 75, 1994, pp. 409-506. Zbl0831.60103MR1279759
  10. [10] E. Olivieri and E. Scoppola, Markov chains with exponentially small transition probabilities: first exit problem from a general domain. I. The reversible case, preprint, 1994. Zbl1081.60541MR1327899
  11. [11] N.G. Van Kampen, Stochastic Processes in Physics and Chemistry, Elsevier, Amsterdam/New York, chap. 11, 1981. Zbl0511.60038
  12. [12] C.W. Gardiner, Handbook of Stochastic Methods, Springer-Verlag, New York/Berlin, chap. 9, 1983. Zbl0515.60002MR714148
  13. [13] M.I. Freidlin and A.D. Wentzell, Random Perturbations of Dynamical Systems, Springer-Verlag, New York/Berlin, chaps. 4 & 6, 1984. 
  14. [14] M. Cassandro, A. Galves, E. Olivieri and M.E. Vares, Metastable behavior of stochastic dynamics: a pathwise approach, J. Stat. Phys., Vol. 35, 1984, pp. 603-634. Zbl0591.60080MR749840
  15. [ 15] A. Galves, E. Olivieri and M.E. Vares, Metastability for a class of dynamical systems subject to small random perturbations, Ann. Prob., Vol. 15, 1987, pp. 1288-1305. Zbl0709.60058MR905332
  16. [16] F. Martinelli, E. Olivieri, and E. Scoppola, Small random perturbations of finite- and infinite-dimensional dynamical systems: unpredictability of exit times, J. Stat. Phys., Vol. 55, 1989, pp. 477-504. Zbl0714.60109MR1003525
  17. [17] R. Lenormand and S. Bories, Description d'un mécanisme de connexion de liaison destiné à l'étude du drainage avec piégeage en milieu poreux, C.R. Acad. Sci. Paris Sér. B, Vol. 291, 1980, pp. 279-282. 
  18. [18] R. Chandler, J. Koplick, K. Lerman and J.F. Willemsen, Capillary displacement and percolation in porous media, J. Fluid Mech., Vol. 119, 1982, pp. 249-267. Zbl0491.76090
  19. [19] D. Wilkinson and J.F. Willemsen, Invasion percolation: a new form of percolation theory, J. Phys. A, Vol. 16, 1983, pp. 3365-3376. MR725616
  20. [20] J.T. Chayes, L. Chayes and C.M. Newman, The stochastic geometry of invasion percolation, Comm. Math. Phys., Vol. 101, 1985, pp. 383-407. MR815191
  21. [21] C.M. Newman and D.L. Stein, Spin glass model with dimension-dependent ground state multiplicity, Phys. Rev. Lett., Vol. 72, 1994, pp. 2286-2289. 
  22. [22] P. Diaconis and D. Stroock, Geometric bounds for eigenvalues of Markov chains, Ann. Applied Prob., Vol. 1, 1991, pp. 36-61. Zbl0731.60061MR1097463

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.