Existence of positive harmonic functions on groups and on covering manifolds

Philippe Bougerol; Laure Elie

Annales de l'I.H.P. Probabilités et statistiques (1995)

  • Volume: 31, Issue: 1, page 59-80
  • ISSN: 0246-0203

How to cite

top

Bougerol, Philippe, and Elie, Laure. "Existence of positive harmonic functions on groups and on covering manifolds." Annales de l'I.H.P. Probabilités et statistiques 31.1 (1995): 59-80. <http://eudml.org/doc/77509>.

@article{Bougerol1995,
author = {Bougerol, Philippe, Elie, Laure},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walks; bounded harmonic functions; positive harmonic functions; locally compact groups; Riemannian manifolds; probability measure; regular covering; compact manifold; deck transformation group; Laplace- Beltrami operator; co-compact Riemannian covering},
language = {eng},
number = {1},
pages = {59-80},
publisher = {Gauthier-Villars},
title = {Existence of positive harmonic functions on groups and on covering manifolds},
url = {http://eudml.org/doc/77509},
volume = {31},
year = {1995},
}

TY - JOUR
AU - Bougerol, Philippe
AU - Elie, Laure
TI - Existence of positive harmonic functions on groups and on covering manifolds
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1995
PB - Gauthier-Villars
VL - 31
IS - 1
SP - 59
EP - 80
LA - eng
KW - random walks; bounded harmonic functions; positive harmonic functions; locally compact groups; Riemannian manifolds; probability measure; regular covering; compact manifold; deck transformation group; Laplace- Beltrami operator; co-compact Riemannian covering
UR - http://eudml.org/doc/77509
ER -

References

top
  1. [1] G. Alexopoulos, Fonctions harmoniques bornées sur les groupes résolubles, C. R. Acad. Sci. Paris, I, Vol. 305, 1987, pp. 777-779. Zbl0657.31014MR921133
  2. [2] A. Ancona, Théorie du potentiel sur les graphes et les variétés, Lecture Notes in Math., Vol. 1427, 1990, Springer Verlag, Berlin, Heidelberg, New York, pp. 4-112. Zbl0719.60074MR1100282
  3. [3] S. Asmussen, Applied probability and queues, Wiley, New York, 1987. Zbl0624.60098MR889893
  4. [4] A. Avez, Harmonic functions on groups, in Differential geometry and relativity, Reidel, Dordrecht, 1976, pp. 27-32. Zbl0345.31004MR507229
  5. [5] R. Azencott, Espaces de Poisson des groupes localement compacts, Lecture Notes in Math., Vol. 148, 1970, Springer Verlag, Berlin, Heidelberg, New York. Zbl0208.15302MR501376
  6. [6] M. Babillot, Ph. Bougerol and L. Elie, in preparation. 
  7. [7] W. Ballmann and F. Ledrappier, Discretization of positive harmonic functions on Riemannian manifolds and Martin boundaries, Actes de la Table Ronde de Géométrie Différentielle en l'honneur de Marcel Berger, Arthur L. Besse, Ed., Séminaires et Congrès 1, 1994, SMF. Zbl0885.53037
  8. [8] N. Bourbaki, Lie groups and Lie algebra, Hermann, Paris, 1975. 
  9. [9] R. Brooks, The fundamental group and the spectrum of the Laplacian, Comm. Math. Helv., Vol. 56, 1981, pp. 501-508. Zbl0495.58029MR656213
  10. [10] E. Cinlar, Markov renewal theory, Adv. Appl. Prob., Vol. 1, 1969, pp. 123-187. Zbl0212.49601MR268975
  11. [11] L. Elie, Comportement asymptotique du noyau potentiel sur les groupes de Lie, Ann. Scient. Ec. Norm. Sup., Vol. 15, 1982, pp. 257-364. Zbl0509.60070MR683637
  12. [12] W. Feller, An introduction to probability and its application, Vol. 2, 1971, Wiley, New York. Zbl0219.60003MR270403
  13. [13] Y. Guivarc'h, Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. France, Vol. 101, 1973, pp. 178-250. Zbl0294.43003MR369608
  14. [14] Y. Guivarc'h, Sur la loi des grands nombres et le rayon spectral d'une marche aléatoire, Astérisque, Vol. 74, 1980, pp. 47-98. Zbl0448.60007MR588157
  15. [15] Y. Guivarc'h, Application d'un théorème limite local à la transience et à la récurrence de marches de Markov, in Théorie du potentiel, Proceedings, Lecture Notes in Math., Vol. 1096, 1984, Springer Verlag, Berlin, Heidelberg, New York, pp. 301-332. Zbl0562.60074MR890364
  16. [16] Y. Guivarc'h, M. Keane and B. Roynette, Marches aléatoires sur les groupes de Lie, Lecture Notes in Math., Vol. 624, 1977, Springer Verlag, Berlin, Heidelberg, New York. Zbl0367.60081MR517359
  17. [17] A. Gut, Stopped random walks, Springer Verlag, Berlin, Heidelberg, New York, 1988. Zbl0634.60061MR916870
  18. [18] W. Hebish, L. Saloff Coste, Gaussian estimate for Markov chains and random walks on groups, Ann. Probab., Vol. 21, 1993, pp. 673-709. Zbl0776.60086MR1217561
  19. [19] J. Jacod, Théorème de renouvellement et classification pour les chaînes semi-markoviennes, Ann. Inst. H. Poincaré, Vol. 7, 1971, pp. 83-129. Zbl0217.50502MR305496
  20. [20] V.A. Kaimanovitch, Boundaries of random walks on polycyclic groups and the law of large numbers for solvable Lie groups, Vestnik Leningrad University: Mathematics, Vol. 20, 1987, pp. 49-52. Zbl0631.60006
  21. [21] V.A. Kaimanovitch, Discretization of bounded harmonic functions on Riemannian manifolds and entropy, in Proceedings of the International Conference on Potential Theory, Nagoya, (M. Kishi, Ed.), de Gruyter, Berlin, 1992, pp. 213-223. Zbl0768.58054MR1167237
  22. [22] M. Lin, Conservative Markov processes on a topological space, Israel J. Math., Vol. 8, 1970, pp. 165-186. Zbl0219.60005MR265559
  23. [23] V. Losert, On the structure of groups with polynomial growth, Math. Z., Vol. 195, 1987, pp. 109-117. Zbl0633.22002MR888132
  24. [24] T. Lyons, D. Sullivan, Function theory, random paths and covering spaces, J. Diff. Geom., Vol. 19, 1984, pp. 299-323. Zbl0554.58022MR755228
  25. [25] J. Milnor, A note on curvature and the fundamental group, J. Diff. Geom., Vol. 2, 1968, pp. 1-7. Zbl0162.25401MR232311
  26. [26] S.A. Molchanov, Martin boundaries for invariant Markov processes on a solvable group, Theory Probab. Appl., Vol. 12, 1967, pp. 310-314. Zbl0308.60044
  27. [27] D. Montgomery and L. Zippin, Topological transformations groups, Interscience Publishers, New York, 1955. Zbl0068.01904MR73104

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.