Existence of positive harmonic functions on groups and on covering manifolds
Annales de l'I.H.P. Probabilités et statistiques (1995)
- Volume: 31, Issue: 1, page 59-80
- ISSN: 0246-0203
Access Full Article
topHow to cite
topBougerol, Philippe, and Elie, Laure. "Existence of positive harmonic functions on groups and on covering manifolds." Annales de l'I.H.P. Probabilités et statistiques 31.1 (1995): 59-80. <http://eudml.org/doc/77509>.
@article{Bougerol1995,
author = {Bougerol, Philippe, Elie, Laure},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walks; bounded harmonic functions; positive harmonic functions; locally compact groups; Riemannian manifolds; probability measure; regular covering; compact manifold; deck transformation group; Laplace- Beltrami operator; co-compact Riemannian covering},
language = {eng},
number = {1},
pages = {59-80},
publisher = {Gauthier-Villars},
title = {Existence of positive harmonic functions on groups and on covering manifolds},
url = {http://eudml.org/doc/77509},
volume = {31},
year = {1995},
}
TY - JOUR
AU - Bougerol, Philippe
AU - Elie, Laure
TI - Existence of positive harmonic functions on groups and on covering manifolds
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1995
PB - Gauthier-Villars
VL - 31
IS - 1
SP - 59
EP - 80
LA - eng
KW - random walks; bounded harmonic functions; positive harmonic functions; locally compact groups; Riemannian manifolds; probability measure; regular covering; compact manifold; deck transformation group; Laplace- Beltrami operator; co-compact Riemannian covering
UR - http://eudml.org/doc/77509
ER -
References
top- [1] G. Alexopoulos, Fonctions harmoniques bornées sur les groupes résolubles, C. R. Acad. Sci. Paris, I, Vol. 305, 1987, pp. 777-779. Zbl0657.31014MR921133
- [2] A. Ancona, Théorie du potentiel sur les graphes et les variétés, Lecture Notes in Math., Vol. 1427, 1990, Springer Verlag, Berlin, Heidelberg, New York, pp. 4-112. Zbl0719.60074MR1100282
- [3] S. Asmussen, Applied probability and queues, Wiley, New York, 1987. Zbl0624.60098MR889893
- [4] A. Avez, Harmonic functions on groups, in Differential geometry and relativity, Reidel, Dordrecht, 1976, pp. 27-32. Zbl0345.31004MR507229
- [5] R. Azencott, Espaces de Poisson des groupes localement compacts, Lecture Notes in Math., Vol. 148, 1970, Springer Verlag, Berlin, Heidelberg, New York. Zbl0208.15302MR501376
- [6] M. Babillot, Ph. Bougerol and L. Elie, in preparation.
- [7] W. Ballmann and F. Ledrappier, Discretization of positive harmonic functions on Riemannian manifolds and Martin boundaries, Actes de la Table Ronde de Géométrie Différentielle en l'honneur de Marcel Berger, Arthur L. Besse, Ed., Séminaires et Congrès 1, 1994, SMF. Zbl0885.53037
- [8] N. Bourbaki, Lie groups and Lie algebra, Hermann, Paris, 1975.
- [9] R. Brooks, The fundamental group and the spectrum of the Laplacian, Comm. Math. Helv., Vol. 56, 1981, pp. 501-508. Zbl0495.58029MR656213
- [10] E. Cinlar, Markov renewal theory, Adv. Appl. Prob., Vol. 1, 1969, pp. 123-187. Zbl0212.49601MR268975
- [11] L. Elie, Comportement asymptotique du noyau potentiel sur les groupes de Lie, Ann. Scient. Ec. Norm. Sup., Vol. 15, 1982, pp. 257-364. Zbl0509.60070MR683637
- [12] W. Feller, An introduction to probability and its application, Vol. 2, 1971, Wiley, New York. Zbl0219.60003MR270403
- [13] Y. Guivarc'h, Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. France, Vol. 101, 1973, pp. 178-250. Zbl0294.43003MR369608
- [14] Y. Guivarc'h, Sur la loi des grands nombres et le rayon spectral d'une marche aléatoire, Astérisque, Vol. 74, 1980, pp. 47-98. Zbl0448.60007MR588157
- [15] Y. Guivarc'h, Application d'un théorème limite local à la transience et à la récurrence de marches de Markov, in Théorie du potentiel, Proceedings, Lecture Notes in Math., Vol. 1096, 1984, Springer Verlag, Berlin, Heidelberg, New York, pp. 301-332. Zbl0562.60074MR890364
- [16] Y. Guivarc'h, M. Keane and B. Roynette, Marches aléatoires sur les groupes de Lie, Lecture Notes in Math., Vol. 624, 1977, Springer Verlag, Berlin, Heidelberg, New York. Zbl0367.60081MR517359
- [17] A. Gut, Stopped random walks, Springer Verlag, Berlin, Heidelberg, New York, 1988. Zbl0634.60061MR916870
- [18] W. Hebish, L. Saloff Coste, Gaussian estimate for Markov chains and random walks on groups, Ann. Probab., Vol. 21, 1993, pp. 673-709. Zbl0776.60086MR1217561
- [19] J. Jacod, Théorème de renouvellement et classification pour les chaînes semi-markoviennes, Ann. Inst. H. Poincaré, Vol. 7, 1971, pp. 83-129. Zbl0217.50502MR305496
- [20] V.A. Kaimanovitch, Boundaries of random walks on polycyclic groups and the law of large numbers for solvable Lie groups, Vestnik Leningrad University: Mathematics, Vol. 20, 1987, pp. 49-52. Zbl0631.60006
- [21] V.A. Kaimanovitch, Discretization of bounded harmonic functions on Riemannian manifolds and entropy, in Proceedings of the International Conference on Potential Theory, Nagoya, (M. Kishi, Ed.), de Gruyter, Berlin, 1992, pp. 213-223. Zbl0768.58054MR1167237
- [22] M. Lin, Conservative Markov processes on a topological space, Israel J. Math., Vol. 8, 1970, pp. 165-186. Zbl0219.60005MR265559
- [23] V. Losert, On the structure of groups with polynomial growth, Math. Z., Vol. 195, 1987, pp. 109-117. Zbl0633.22002MR888132
- [24] T. Lyons, D. Sullivan, Function theory, random paths and covering spaces, J. Diff. Geom., Vol. 19, 1984, pp. 299-323. Zbl0554.58022MR755228
- [25] J. Milnor, A note on curvature and the fundamental group, J. Diff. Geom., Vol. 2, 1968, pp. 1-7. Zbl0162.25401MR232311
- [26] S.A. Molchanov, Martin boundaries for invariant Markov processes on a solvable group, Theory Probab. Appl., Vol. 12, 1967, pp. 310-314. Zbl0308.60044
- [27] D. Montgomery and L. Zippin, Topological transformations groups, Interscience Publishers, New York, 1955. Zbl0068.01904MR73104
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.