Sur l'existence des suites de variables aléatoires s à s indépendantes échangeables ou stationnaires
Jean Bretagnolle; Andrzej Klopotowski
Annales de l'I.H.P. Probabilités et statistiques (1995)
- Volume: 31, Issue: 2, page 325-350
- ISSN: 0246-0203
Access Full Article
topHow to cite
topBretagnolle, Jean, and Klopotowski, Andrzej. "Sur l'existence des suites de variables aléatoires s à s indépendantes échangeables ou stationnaires." Annales de l'I.H.P. Probabilités et statistiques 31.2 (1995): 325-350. <http://eudml.org/doc/77512>.
@article{Bretagnolle1995,
author = {Bretagnolle, Jean, Klopotowski, Andrzej},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {pairwise independent; exchangeable random variables; mutually independent; stationary sequences},
language = {fre},
number = {2},
pages = {325-350},
publisher = {Gauthier-Villars},
title = {Sur l'existence des suites de variables aléatoires s à s indépendantes échangeables ou stationnaires},
url = {http://eudml.org/doc/77512},
volume = {31},
year = {1995},
}
TY - JOUR
AU - Bretagnolle, Jean
AU - Klopotowski, Andrzej
TI - Sur l'existence des suites de variables aléatoires s à s indépendantes échangeables ou stationnaires
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1995
PB - Gauthier-Villars
VL - 31
IS - 2
SP - 325
EP - 350
LA - fre
KW - pairwise independent; exchangeable random variables; mutually independent; stationary sequences
UR - http://eudml.org/doc/77512
ER -
References
top- [1] D.J. Aldous, Exchangeability and related topics, Springer Lecture Notes in Math., Vol. 1117, 1983, pp. 1-198. Zbl0562.60042MR883646
- [2] C.B. Bell, Maximal independent stochastic processes, Ann. Math. Statist., Vol. 32, 1961, pp. 704-708. Zbl0101.11203MR126866
- [3] S.N. Bernstein, Théorie des probabilités, en Russe, Gostechizdat, Moscou-Leningrad, 4e éd., 1946. Zbl0063.00337
- [3 bis] P. Billingsley, Ergodic Theory and Information, Wiley Series in Probability and Mathematical Statistics, 1965. Zbl0141.16702MR192027
- [4] R.C. Bradley, A stationary, pairwise independent, absolutely regular sequence for which the central limit theorem fails, Probab. Th. Rel. Fields, Vol. 81, 1989, pp. 1-10. Zbl0649.60017MR981565
- [5] S. Csörgö, K. Tandori et V. Totik, On the strong law of large numbers for pairwise independent random variables, Ann. Math. Hung., Vol. 42, 1983, p. 319-330. Zbl0534.60028MR722846
- [6] P.H. Diananda, The central limit theorem for m-dependent variables, Proc. Cambridge Philos. Soc., Vol. 51, 1955, p. 92-95. Zbl0064.13104MR67396
- [7] Y. Derriennic, Une lettre, Janvier 1991.
- [8] Y. Derriennic et A. Klopotowski, Cinq variables aléatoires binaires stationnaires deux à deux indépendantes, Prépubl. Institut Galilée, Université Paris XIII, Novembre 1991, p. 1-38.
- [9] Y. Derriennic et A. Klopotowski, Sur les hypothèses constructibles concernant des suites de variables aléatoires binaires, Idem, Décembre 1991, p. 1-10.
- [10] N. Etemadi, An elementary proof of the strong law of large numbers, Z. Wahrsch. verw. Gebiete, Vol. 55, 1981, p. 119-122. Zbl0438.60027MR606010
- [11] S. Geisser et N. Mantel, Pairwise independence of jointly dependent variables, Ann. Math. Statist., Vol. 32, 1962, pp. 290-291. Zbl0102.35802MR137188
- [12] C.P. Han, Dependence of random variables, The Amer. Statist., Vol. 25, 1971, p. 35. Zbl0493.33006
- [13] S. Janson, Some pairwise independent sequences for which the central limit theorem fails, Stochastics, Vol. 23, 1988, pp. 439-448. Zbl0645.60027MR943814
- [14] A. Joffe, On a sequence of almost deterministic pairwise independent random variables, Proc. Amer. Math. Soc., Vol. 29, 1971, pp. 381-382. Zbl0217.21102MR279857
- [15] A. Joffe, On a set of almost deterministic k-independent random variables, Ann. of Prob., Vol. 2, 1974, pp. 161-162. Zbl0276.60005MR356150
- [16] J.F.C. Kingman, Uses of exchangeability, Ann. of Prob., Vol. 6, 1978, pp. 183-197. Zbl0374.60064MR494344
- [17] H.O. Lancaster, Pairwise statistical independence, Ann. Math. Statist., Vol. 36, 1965, pp. 1313-1317. Zbl0131.18105MR176507
- [18] P. Lévy, Exemple de processus pseudo-Markoviens, C. R. Acad. Sci. Paris, Vol. 228, 1949, pp. 2004-2006. Zbl0041.25201MR31218
- [19] G.L. O'Brien, Pairwise independent random variables, Ann. of Prob., Vol. 8, 1980, pp. 170-175. Zbl0426.60011MR556424
- [20] E.J.G. Pitman et E.J. Williams, Cauchy - distributed functions of Cauchy variates, Ann. Math. Statist., Vol. 38, 1967, pp. 916-918. Zbl0201.51104MR210166
- [21] J.B. Robertson, Independence and Fair Coin-Tossing, Math. Scientist, Vol. 10, 1985, pp. 109-117. Zbl0583.60031MR832126
- [22] J.B. Robertson et J.M. Womack, A pairwise independent stationary stochastic process, Statistics and Probability Letters, Vol. 3, 1985, pp. 195-199. Zbl0569.60041MR801689
- [23] M. Rosenblatt et D. Slepian, Nth order Markov chain with every N variables independent, J. SIAM, Vol. 10, 1962, pp. 537-549. Zbl0154.43103MR150824
- [24] J.M. Stoyanov, Counterexamples in probability, John Wiley & Sons, 1987. Zbl0629.60001
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.