Sur l'existence des suites de variables aléatoires s à s indépendantes échangeables ou stationnaires

Jean Bretagnolle; Andrzej Klopotowski

Annales de l'I.H.P. Probabilités et statistiques (1995)

  • Volume: 31, Issue: 2, page 325-350
  • ISSN: 0246-0203

How to cite

top

Bretagnolle, Jean, and Klopotowski, Andrzej. "Sur l'existence des suites de variables aléatoires s à s indépendantes échangeables ou stationnaires." Annales de l'I.H.P. Probabilités et statistiques 31.2 (1995): 325-350. <http://eudml.org/doc/77512>.

@article{Bretagnolle1995,
author = {Bretagnolle, Jean, Klopotowski, Andrzej},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {pairwise independent; exchangeable random variables; mutually independent; stationary sequences},
language = {fre},
number = {2},
pages = {325-350},
publisher = {Gauthier-Villars},
title = {Sur l'existence des suites de variables aléatoires s à s indépendantes échangeables ou stationnaires},
url = {http://eudml.org/doc/77512},
volume = {31},
year = {1995},
}

TY - JOUR
AU - Bretagnolle, Jean
AU - Klopotowski, Andrzej
TI - Sur l'existence des suites de variables aléatoires s à s indépendantes échangeables ou stationnaires
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1995
PB - Gauthier-Villars
VL - 31
IS - 2
SP - 325
EP - 350
LA - fre
KW - pairwise independent; exchangeable random variables; mutually independent; stationary sequences
UR - http://eudml.org/doc/77512
ER -

References

top
  1. [1] D.J. Aldous, Exchangeability and related topics, Springer Lecture Notes in Math., Vol. 1117, 1983, pp. 1-198. Zbl0562.60042MR883646
  2. [2] C.B. Bell, Maximal independent stochastic processes, Ann. Math. Statist., Vol. 32, 1961, pp. 704-708. Zbl0101.11203MR126866
  3. [3] S.N. Bernstein, Théorie des probabilités, en Russe, Gostechizdat, Moscou-Leningrad, 4e éd., 1946. Zbl0063.00337
  4. [3 bis] P. Billingsley, Ergodic Theory and Information, Wiley Series in Probability and Mathematical Statistics, 1965. Zbl0141.16702MR192027
  5. [4] R.C. Bradley, A stationary, pairwise independent, absolutely regular sequence for which the central limit theorem fails, Probab. Th. Rel. Fields, Vol. 81, 1989, pp. 1-10. Zbl0649.60017MR981565
  6. [5] S. Csörgö, K. Tandori et V. Totik, On the strong law of large numbers for pairwise independent random variables, Ann. Math. Hung., Vol. 42, 1983, p. 319-330. Zbl0534.60028MR722846
  7. [6] P.H. Diananda, The central limit theorem for m-dependent variables, Proc. Cambridge Philos. Soc., Vol. 51, 1955, p. 92-95. Zbl0064.13104MR67396
  8. [7] Y. Derriennic, Une lettre, Janvier 1991. 
  9. [8] Y. Derriennic et A. Klopotowski, Cinq variables aléatoires binaires stationnaires deux à deux indépendantes, Prépubl. Institut Galilée, Université Paris XIII, Novembre 1991, p. 1-38. 
  10. [9] Y. Derriennic et A. Klopotowski, Sur les hypothèses constructibles concernant des suites de variables aléatoires binaires, Idem, Décembre 1991, p. 1-10. 
  11. [10] N. Etemadi, An elementary proof of the strong law of large numbers, Z. Wahrsch. verw. Gebiete, Vol. 55, 1981, p. 119-122. Zbl0438.60027MR606010
  12. [11] S. Geisser et N. Mantel, Pairwise independence of jointly dependent variables, Ann. Math. Statist., Vol. 32, 1962, pp. 290-291. Zbl0102.35802MR137188
  13. [12] C.P. Han, Dependence of random variables, The Amer. Statist., Vol. 25, 1971, p. 35. Zbl0493.33006
  14. [13] S. Janson, Some pairwise independent sequences for which the central limit theorem fails, Stochastics, Vol. 23, 1988, pp. 439-448. Zbl0645.60027MR943814
  15. [14] A. Joffe, On a sequence of almost deterministic pairwise independent random variables, Proc. Amer. Math. Soc., Vol. 29, 1971, pp. 381-382. Zbl0217.21102MR279857
  16. [15] A. Joffe, On a set of almost deterministic k-independent random variables, Ann. of Prob., Vol. 2, 1974, pp. 161-162. Zbl0276.60005MR356150
  17. [16] J.F.C. Kingman, Uses of exchangeability, Ann. of Prob., Vol. 6, 1978, pp. 183-197. Zbl0374.60064MR494344
  18. [17] H.O. Lancaster, Pairwise statistical independence, Ann. Math. Statist., Vol. 36, 1965, pp. 1313-1317. Zbl0131.18105MR176507
  19. [18] P. Lévy, Exemple de processus pseudo-Markoviens, C. R. Acad. Sci. Paris, Vol. 228, 1949, pp. 2004-2006. Zbl0041.25201MR31218
  20. [19] G.L. O'Brien, Pairwise independent random variables, Ann. of Prob., Vol. 8, 1980, pp. 170-175. Zbl0426.60011MR556424
  21. [20] E.J.G. Pitman et E.J. Williams, Cauchy - distributed functions of Cauchy variates, Ann. Math. Statist., Vol. 38, 1967, pp. 916-918. Zbl0201.51104MR210166
  22. [21] J.B. Robertson, Independence and Fair Coin-Tossing, Math. Scientist, Vol. 10, 1985, pp. 109-117. Zbl0583.60031MR832126
  23. [22] J.B. Robertson et J.M. Womack, A pairwise independent stationary stochastic process, Statistics and Probability Letters, Vol. 3, 1985, pp. 195-199. Zbl0569.60041MR801689
  24. [23] M. Rosenblatt et D. Slepian, Nth order Markov chain with every N variables independent, J. SIAM, Vol. 10, 1962, pp. 537-549. Zbl0154.43103MR150824
  25. [24] J.M. Stoyanov, Counterexamples in probability, John Wiley & Sons, 1987. Zbl0629.60001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.