Further results on laws of large numbers for uncertain random variables
Feng Hu; Xiaoting Fu; Ziyi Qu; Zhaojun Zong
Kybernetika (2023)
- Volume: 59, Issue: 2, page 314-338
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topHu, Feng, et al. "Further results on laws of large numbers for uncertain random variables." Kybernetika 59.2 (2023): 314-338. <http://eudml.org/doc/299096>.
@article{Hu2023,
abstract = {The uncertainty theory was founded by Baoding Liu to characterize uncertainty information represented by humans. Basing on uncertainty theory, Yuhan Liu created chance theory to describe the complex phenomenon, in which human uncertainty and random phenomenon coexist. In this paper, our aim is to derive some laws of large numbers (LLNs) for uncertain random variables. The first theorem proved the Etemadi type LLN for uncertain random variables being functions of pairwise independent and identically distributed random variables and uncertain variables without satisfying the conditions of regular, independent and identically distributed (IID). Two kinds of Marcinkiewicz-Zygmund type LLNs for uncertain random variables were established in the case of $p \in (0, 1)$ by the second theorem, and in the case of $p > 1$ by the third theorem, respectively. For better illustrating of LLNs for uncertain random variables, some examples were stated and explained. Compared with the existed theorems of LLNs for uncertain random variables, our theorems are the generalised results.},
author = {Hu, Feng, Fu, Xiaoting, Qu, Ziyi, Zong, Zhaojun},
journal = {Kybernetika},
keywords = {law of large numbers; uncertain random variable; Etemadi type theorem; Marcinkiewicz–Zygmund type theorem},
language = {eng},
number = {2},
pages = {314-338},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Further results on laws of large numbers for uncertain random variables},
url = {http://eudml.org/doc/299096},
volume = {59},
year = {2023},
}
TY - JOUR
AU - Hu, Feng
AU - Fu, Xiaoting
AU - Qu, Ziyi
AU - Zong, Zhaojun
TI - Further results on laws of large numbers for uncertain random variables
JO - Kybernetika
PY - 2023
PB - Institute of Information Theory and Automation AS CR
VL - 59
IS - 2
SP - 314
EP - 338
AB - The uncertainty theory was founded by Baoding Liu to characterize uncertainty information represented by humans. Basing on uncertainty theory, Yuhan Liu created chance theory to describe the complex phenomenon, in which human uncertainty and random phenomenon coexist. In this paper, our aim is to derive some laws of large numbers (LLNs) for uncertain random variables. The first theorem proved the Etemadi type LLN for uncertain random variables being functions of pairwise independent and identically distributed random variables and uncertain variables without satisfying the conditions of regular, independent and identically distributed (IID). Two kinds of Marcinkiewicz-Zygmund type LLNs for uncertain random variables were established in the case of $p \in (0, 1)$ by the second theorem, and in the case of $p > 1$ by the third theorem, respectively. For better illustrating of LLNs for uncertain random variables, some examples were stated and explained. Compared with the existed theorems of LLNs for uncertain random variables, our theorems are the generalised results.
LA - eng
KW - law of large numbers; uncertain random variable; Etemadi type theorem; Marcinkiewicz–Zygmund type theorem
UR - http://eudml.org/doc/299096
ER -
References
top- Ahmadzade, H., Sheng, Y., Esfahani, M., , Fuzzy Optim. Decis. Making 16 (2017), 205-220. MR3638395DOI
- Avena, L., Hollander, F. den, Redig, F., , Electron. J. Probab. 16 (2011), 587-617. MR2786643DOI
- Bretagnolle, J., Klopotowski, A., Sur l' existence des suites de variables aléatoires s à s indépendantes échangeables ou stationnaires., Ann. De L'IHP Probab. Et Statist. 31 (1995), 325-350. MR1324811
- Calvo, T., Mesiarová, A., Valášková, L., , Kybernetika 39 (2003), 643-650. MR2042346DOI
- Comets, F., Zeitouni, O., , Ann. Probab. 32 (2004), 880-914. MR2039946DOI
- Hollander, F. den, Santos, R. dos, Sidoravicius, V., , Stoch. Process. Appl. 123 (2013), 156-190. MR2988114DOI
- Etemadi, N., , Z. Wahrscheinlichkeitstheorie Und Verwandte Geb. 55 (1981), 119-122. MR0606010DOI
- Fullér, R., , Fuzzy Set. Syst. 45 (1992), 299-303. MR1154193DOI
- Gao, Y., , Fuzzy Optim. Decis. Making 11 (2012), 481-492. MR2999704DOI
- Gao, J., Yao, K., , Int. J. Intell. Syst. 30 (2015), 52-65. DOI
- Gao, R., Ahmadzade, H., Further results of convergence of uncertain random sequences., Iran. J. Fuzzy Syst. 15 (2018), 31-42. MR3822995
- Gao, R., Sheng, Y., , J. Intell. Fuzzy Syst. 31 (2016), 1227-1234. DOI
- Gao, R., Ralescu, D. A., , IEEE Trans. Fuzzy Syst. 26 (2018), 1427-1434. DOI
- Hong, D. H., Ro, P. I., , Fuzzy Set. Syst. 116 (2000), 269-274. MR1788398DOI
- Hou, Y., , J. Uncertain. Anal. Appl. 2 (2014), 14. DOI
- Inoue, H., , Fuzzy Set. Syst. 41 (1991), 285-291. MR1111975DOI
- Joo, S. Y., Kim, Y. K., , Fuzzy Set. Syst. 120 (2001), 499-503. MR1829267DOI
- Ke, H., Su, T., Ni, Y., , Soft Comput. 19 (2015), 1739-1746. DOI
- Ke, H., Ma, J., Tian, G., , J. Intell. Manuf. 28 (2017), 589-596. DOI
- Kim, Y. K., , Fuzzy Set. Syst. 111 (2000), 319-323. MR1748548DOI
- Komorowski, T., Krupa, G., The law of large numbers for ballistic, multidimensional random walks on random lattices with correlated sites., Ann. Inst. H. Poincaré Probab. Statist. 39 (2003), 263-285. MR1962136
- Kruse, R., , Inf. Sci. 28 (1982), 233-241. MR0717301DOI
- Kwakernaak, H., , Inf. Sci. 15 (1978), 1-29. MR0538672DOI
- Kwakernaak, H., , Inf. Sci. 17 (1979), 253-278. MR0539046DOI
- Liu, B., Uncertainty Theory. Second edition., Springer-Verlag, Berlin 2007. MR2683154
- Liu, B., Fuzzy process, hybrid process and uncertain process., J. Uncertain Syst. 2 (2008), 3-16.
- Liu, B., Some research problems in uncertainty theory., J. Uncertain Syst. 3 (2009), 3-10. MR3307516
- Liu, B., Theory and Practice of Uncertain Programming. Second edition., Springer-Verlag, Berlin 2009.
- Liu, B., Uncertain set theory and uncertain inference rule with application to uncertain control., J. Uncertain Syst. 4 (2010), 83-98.
- Liu, B., Why is there a need for uncertainty theory?, J. Uncertain Syst. 6 (2012), 3-10.
- Liu, B., Uncertain random graph and uncertain random network., J. Uncertain Syst. 8 (2014), 3-12.
- Liu, B., Chen, X., , J. Uncertainty Anal. Appl. 3 (2015), 10. DOI
- Liu, Y., , Soft Comput. 17 (2013), 625-634. DOI
- Liu, Y., , Fuzzy Optim. Decis. Making 12 (2013), 153-169. MR3063020DOI
- Liu, Y., Ralescu, D. A., , Int. J. Uncertain. Fuzz. 22 (2014), 491-504. MR3252138DOI
- Liu, Y., Yao, K., , J. Ambient Intell. Hum. Comput. 8 (2017), 695-706. DOI
- Loève, M., , Springer, New York 1977. MR0651017DOI
- Miyakoshi, M., Shimbo, M., , Fuzzy Set. Syst. 12 (1984), 133-142. Zbl0551.60035MR0734945DOI
- Nowak, P., Hryniewicz, O., , Symmetry 13 (2021), 2258. DOI
- Qin, Z., , Fuzzy Optim. Decis. Making 17 (2018), 375-386. MR3878322DOI
- Sheng, Y., Shi, G., Qin, Z., , Soft Comput. 22 (2018), 5655-5662. DOI
- Struk, P., , Soft Comput. 10 (2006), 502-505. DOI
- Valášková, L., Struk, P., Preservation of distinguished fuzzy measure classes by distortion., In: Modeling Decisions for Artificial Intelligence (H. Katagiri, T. Hayashida, I. Nishizaki, J. Ishimatsu, K. S. Tree, A. Solution, eds.), Berlin Heidelberg, Springer 2004, pp. 175-182.
- Valášková, L., Struk, P., , Kybernetika 41 (2005), 205-212. MR2138768DOI
- Rudin, W., Real and Complex Analysis. Third edition., McGraw-Hill, NewYork 1987. MR0924157
- Yao, K., Chen, X., , J. Intell. Fuzzy Syst. 25 (2013), 825-832. MR3079154DOI
- Yao, K., Gao, J., , IEEE Trans. Fuzzy Syst. 24 (2016), 615-621. DOI
- Zadeh, L. A., , Inf. Control 8 (1965), 338-353. Zbl0942.00007MR0219427DOI
- Zadeh, L. A., 10.1016/0165-0114(78)90029-5, Fuzzy Set Syst. 1 (1978), 3-28. Zbl0377.04002MR0480045DOI10.1016/0165-0114(78)90029-5
- Zhou, J., Wang, F., Wang, K., , Fuzzy Optim. Decis. Making 13 (2014), 397-413. MR3274572DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.