Further results on laws of large numbers for uncertain random variables

Feng Hu; Xiaoting Fu; Ziyi Qu; Zhaojun Zong

Kybernetika (2023)

  • Volume: 59, Issue: 2, page 314-338
  • ISSN: 0023-5954

Abstract

top
The uncertainty theory was founded by Baoding Liu to characterize uncertainty information represented by humans. Basing on uncertainty theory, Yuhan Liu created chance theory to describe the complex phenomenon, in which human uncertainty and random phenomenon coexist. In this paper, our aim is to derive some laws of large numbers (LLNs) for uncertain random variables. The first theorem proved the Etemadi type LLN for uncertain random variables being functions of pairwise independent and identically distributed random variables and uncertain variables without satisfying the conditions of regular, independent and identically distributed (IID). Two kinds of Marcinkiewicz-Zygmund type LLNs for uncertain random variables were established in the case of p ( 0 , 1 ) by the second theorem, and in the case of p > 1 by the third theorem, respectively. For better illustrating of LLNs for uncertain random variables, some examples were stated and explained. Compared with the existed theorems of LLNs for uncertain random variables, our theorems are the generalised results.

How to cite

top

Hu, Feng, et al. "Further results on laws of large numbers for uncertain random variables." Kybernetika 59.2 (2023): 314-338. <http://eudml.org/doc/299096>.

@article{Hu2023,
abstract = {The uncertainty theory was founded by Baoding Liu to characterize uncertainty information represented by humans. Basing on uncertainty theory, Yuhan Liu created chance theory to describe the complex phenomenon, in which human uncertainty and random phenomenon coexist. In this paper, our aim is to derive some laws of large numbers (LLNs) for uncertain random variables. The first theorem proved the Etemadi type LLN for uncertain random variables being functions of pairwise independent and identically distributed random variables and uncertain variables without satisfying the conditions of regular, independent and identically distributed (IID). Two kinds of Marcinkiewicz-Zygmund type LLNs for uncertain random variables were established in the case of $p \in (0, 1)$ by the second theorem, and in the case of $p > 1$ by the third theorem, respectively. For better illustrating of LLNs for uncertain random variables, some examples were stated and explained. Compared with the existed theorems of LLNs for uncertain random variables, our theorems are the generalised results.},
author = {Hu, Feng, Fu, Xiaoting, Qu, Ziyi, Zong, Zhaojun},
journal = {Kybernetika},
keywords = {law of large numbers; uncertain random variable; Etemadi type theorem; Marcinkiewicz–Zygmund type theorem},
language = {eng},
number = {2},
pages = {314-338},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Further results on laws of large numbers for uncertain random variables},
url = {http://eudml.org/doc/299096},
volume = {59},
year = {2023},
}

TY - JOUR
AU - Hu, Feng
AU - Fu, Xiaoting
AU - Qu, Ziyi
AU - Zong, Zhaojun
TI - Further results on laws of large numbers for uncertain random variables
JO - Kybernetika
PY - 2023
PB - Institute of Information Theory and Automation AS CR
VL - 59
IS - 2
SP - 314
EP - 338
AB - The uncertainty theory was founded by Baoding Liu to characterize uncertainty information represented by humans. Basing on uncertainty theory, Yuhan Liu created chance theory to describe the complex phenomenon, in which human uncertainty and random phenomenon coexist. In this paper, our aim is to derive some laws of large numbers (LLNs) for uncertain random variables. The first theorem proved the Etemadi type LLN for uncertain random variables being functions of pairwise independent and identically distributed random variables and uncertain variables without satisfying the conditions of regular, independent and identically distributed (IID). Two kinds of Marcinkiewicz-Zygmund type LLNs for uncertain random variables were established in the case of $p \in (0, 1)$ by the second theorem, and in the case of $p > 1$ by the third theorem, respectively. For better illustrating of LLNs for uncertain random variables, some examples were stated and explained. Compared with the existed theorems of LLNs for uncertain random variables, our theorems are the generalised results.
LA - eng
KW - law of large numbers; uncertain random variable; Etemadi type theorem; Marcinkiewicz–Zygmund type theorem
UR - http://eudml.org/doc/299096
ER -

References

top
  1. Ahmadzade, H., Sheng, Y., Esfahani, M., , Fuzzy Optim. Decis. Making 16 (2017), 205-220. MR3638395DOI
  2. Avena, L., Hollander, F. den, Redig, F., , Electron. J. Probab. 16 (2011), 587-617. MR2786643DOI
  3. Bretagnolle, J., Klopotowski, A., Sur l' existence des suites de variables aléatoires s à s indépendantes échangeables ou stationnaires., Ann. De L'IHP Probab. Et Statist. 31 (1995), 325-350. MR1324811
  4. Calvo, T., Mesiarová, A., Valášková, L., , Kybernetika 39 (2003), 643-650. MR2042346DOI
  5. Comets, F., Zeitouni, O., , Ann. Probab. 32 (2004), 880-914. MR2039946DOI
  6. Hollander, F. den, Santos, R. dos, Sidoravicius, V., , Stoch. Process. Appl. 123 (2013), 156-190. MR2988114DOI
  7. Etemadi, N., , Z. Wahrscheinlichkeitstheorie Und Verwandte Geb. 55 (1981), 119-122. MR0606010DOI
  8. Fullér, R., , Fuzzy Set. Syst. 45 (1992), 299-303. MR1154193DOI
  9. Gao, Y., , Fuzzy Optim. Decis. Making 11 (2012), 481-492. MR2999704DOI
  10. Gao, J., Yao, K., , Int. J. Intell. Syst. 30 (2015), 52-65. DOI
  11. Gao, R., Ahmadzade, H., Further results of convergence of uncertain random sequences., Iran. J. Fuzzy Syst. 15 (2018), 31-42. MR3822995
  12. Gao, R., Sheng, Y., , J. Intell. Fuzzy Syst. 31 (2016), 1227-1234. DOI
  13. Gao, R., Ralescu, D. A., , IEEE Trans. Fuzzy Syst. 26 (2018), 1427-1434. DOI
  14. Hong, D. H., Ro, P. I., , Fuzzy Set. Syst. 116 (2000), 269-274. MR1788398DOI
  15. Hou, Y., , J. Uncertain. Anal. Appl. 2 (2014), 14. DOI
  16. Inoue, H., , Fuzzy Set. Syst. 41 (1991), 285-291. MR1111975DOI
  17. Joo, S. Y., Kim, Y. K., , Fuzzy Set. Syst. 120 (2001), 499-503. MR1829267DOI
  18. Ke, H., Su, T., Ni, Y., , Soft Comput. 19 (2015), 1739-1746. DOI
  19. Ke, H., Ma, J., Tian, G., , J. Intell. Manuf. 28 (2017), 589-596. DOI
  20. Kim, Y. K., , Fuzzy Set. Syst. 111 (2000), 319-323. MR1748548DOI
  21. Komorowski, T., Krupa, G., The law of large numbers for ballistic, multidimensional random walks on random lattices with correlated sites., Ann. Inst. H. Poincaré Probab. Statist. 39 (2003), 263-285. MR1962136
  22. Kruse, R., , Inf. Sci. 28 (1982), 233-241. MR0717301DOI
  23. Kwakernaak, H., , Inf. Sci. 15 (1978), 1-29. MR0538672DOI
  24. Kwakernaak, H., , Inf. Sci. 17 (1979), 253-278. MR0539046DOI
  25. Liu, B., Uncertainty Theory. Second edition., Springer-Verlag, Berlin 2007. MR2683154
  26. Liu, B., Fuzzy process, hybrid process and uncertain process., J. Uncertain Syst. 2 (2008), 3-16. 
  27. Liu, B., Some research problems in uncertainty theory., J. Uncertain Syst. 3 (2009), 3-10. MR3307516
  28. Liu, B., Theory and Practice of Uncertain Programming. Second edition., Springer-Verlag, Berlin 2009. 
  29. Liu, B., Uncertain set theory and uncertain inference rule with application to uncertain control., J. Uncertain Syst. 4 (2010), 83-98. 
  30. Liu, B., Why is there a need for uncertainty theory?, J. Uncertain Syst. 6 (2012), 3-10. 
  31. Liu, B., Uncertain random graph and uncertain random network., J. Uncertain Syst. 8 (2014), 3-12. 
  32. Liu, B., Chen, X., , J. Uncertainty Anal. Appl. 3 (2015), 10. DOI
  33. Liu, Y., , Soft Comput. 17 (2013), 625-634. DOI
  34. Liu, Y., , Fuzzy Optim. Decis. Making 12 (2013), 153-169. MR3063020DOI
  35. Liu, Y., Ralescu, D. A., , Int. J. Uncertain. Fuzz. 22 (2014), 491-504. MR3252138DOI
  36. Liu, Y., Yao, K., , J. Ambient Intell. Hum. Comput. 8 (2017), 695-706. DOI
  37. Loève, M., , Springer, New York 1977. MR0651017DOI
  38. Miyakoshi, M., Shimbo, M., , Fuzzy Set. Syst. 12 (1984), 133-142. Zbl0551.60035MR0734945DOI
  39. Nowak, P., Hryniewicz, O., , Symmetry 13 (2021), 2258. DOI
  40. Qin, Z., , Fuzzy Optim. Decis. Making 17 (2018), 375-386. MR3878322DOI
  41. Sheng, Y., Shi, G., Qin, Z., , Soft Comput. 22 (2018), 5655-5662. DOI
  42. Struk, P., , Soft Comput. 10 (2006), 502-505. DOI
  43. Valášková, L., Struk, P., Preservation of distinguished fuzzy measure classes by distortion., In: Modeling Decisions for Artificial Intelligence (H. Katagiri, T. Hayashida, I. Nishizaki, J. Ishimatsu, K. S. Tree, A. Solution, eds.), Berlin Heidelberg, Springer 2004, pp. 175-182. 
  44. Valášková, L., Struk, P., , Kybernetika 41 (2005), 205-212. MR2138768DOI
  45. Rudin, W., Real and Complex Analysis. Third edition., McGraw-Hill, NewYork 1987. MR0924157
  46. Yao, K., Chen, X., , J. Intell. Fuzzy Syst. 25 (2013), 825-832. MR3079154DOI
  47. Yao, K., Gao, J., , IEEE Trans. Fuzzy Syst. 24 (2016), 615-621. DOI
  48. Zadeh, L. A., , Inf. Control 8 (1965), 338-353. Zbl0942.00007MR0219427DOI
  49. Zadeh, L. A., 10.1016/0165-0114(78)90029-5, Fuzzy Set Syst. 1 (1978), 3-28. Zbl0377.04002MR0480045DOI10.1016/0165-0114(78)90029-5
  50. Zhou, J., Wang, F., Wang, K., , Fuzzy Optim. Decis. Making 13 (2014), 397-413. MR3274572DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.