Lévy processes that can creep downwards never increase
Annales de l'I.H.P. Probabilités et statistiques (1995)
- Volume: 31, Issue: 2, page 379-391
- ISSN: 0246-0203
Access Full Article
topHow to cite
topBertoin, Jean. "Lévy processes that can creep downwards never increase." Annales de l'I.H.P. Probabilités et statistiques 31.2 (1995): 379-391. <http://eudml.org/doc/77514>.
@article{Bertoin1995,
author = {Bertoin, Jean},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Lévy process; non-increase; downwards creeping},
language = {eng},
number = {2},
pages = {379-391},
publisher = {Gauthier-Villars},
title = {Lévy processes that can creep downwards never increase},
url = {http://eudml.org/doc/77514},
volume = {31},
year = {1995},
}
TY - JOUR
AU - Bertoin, Jean
TI - Lévy processes that can creep downwards never increase
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1995
PB - Gauthier-Villars
VL - 31
IS - 2
SP - 379
EP - 391
LA - eng
KW - Lévy process; non-increase; downwards creeping
UR - http://eudml.org/doc/77514
ER -
References
top- [Ad] O. Adelman, Brownian motion never increases: A new proof to a result of Dvoretzky, Erdös and Kakutani, Israël J. Math., Vol. 50, 1985, pp. 189-192. Zbl0573.60030MR793851
- [Al] D.J. Aldous, Probability Approximation via the Poisson Clumping Heuristic, Springer, New York, 1989. Zbl0679.60013MR969362
- [Be] J. Bertoin, Increase of a Lévy process with no positive jumps, Stochastics, Vol. 37, 1991, pp. 247-251. Zbl0739.60065MR1149349
- [Bi] N.H. Bingham, Fluctuation theory in continuous time, Adv. Appl. Prob., Vol. 7, 1975, pp. 705-766. Zbl0322.60068MR386027
- [Bu] C. Burdzy, On nonincrease of Brownian motion, Ann. Prob., Vol. 18, 1990, pp. 978-980. Zbl0719.60086MR1062055
- [C-W] K.L. Chung and J.B. Walsh, To reverse a Markov process, Acta Mathematica, Vol. 123, 1969, pp. 225-251. Zbl0187.41302MR258114
- [D-E-K] A. Dvoretzky, P. Erdös and S. Kakutani, On nonincrease everywhere of the Brownian motion process, in: Proc. 4th. Berkeley Symp. Math. Stat. and Probab., Vol. II, 1961, pp. 103-116. Zbl0111.15002MR132608
- [Fr] B. Fristedt, Sample functions of stochastic processes with stationary independent increments, in: P. NEY and S. PORT Ed., Adv. Probab., Vol. 3, 1974, pp. 241-396, Dekker. Zbl0309.60047MR400406
- [G-P] P. Greenwood and J. Pitman, Fluctuation identities for Lévy processes and splitting at the maximum, Adv. Appl. Prob., Vol. 12, 1980, pp. 893-902. Zbl0443.60037MR588409
- [Ke] H. Kesten, Hitting probabilities of single points for processes with stationary independent increments, Mem. Amer. Math. Soc., Vol. 93, 1969. Zbl0186.50202MR272059
- [Kn] F.B. Knight, Essential of Brownian Notion and Diffusion, Math Survey, Vol. 18, Amer. Math. Soc., 1981, Providence, R.I. Zbl0458.60002MR613983
- [Mi-1] P.W. Millar, Exit properties of stochastic processes with stationary independent increments, Trans. Amer. Math. Soc., Vol. 178, 1973, pp. 459-479. Zbl0268.60065MR321198
- [Mi-2] P.W. Millar, Zero-one laws and the minimum of a Markov process, Trans. Amer. Math. Soc., Vol. 226, 1977, pp. 365-391. Zbl0381.60062MR433606
- [Ne] J. Neveu, Une généralisation des processus à accroissements positifs indépendants, Abh. Math. Sem. Univ. Hamburg, Vol. 25, 1961, pp. 36-61. Zbl0103.36303MR130714
- [Ro] L.C.G. Rogers, A new identity for real Lévy processes, Ann. Inst. Henri-Poincaré, Vol. 20, 1984, pp. 20-34. MR740248
- [Sh] M.J. Sharpe, General Theory of Markov Processes, Academic Press, Boston, 1989. Zbl0649.60079MR958914
- [Wi] D. Williams, Path decomposition and continuity of local time for one-dimensional diffusions, Proc. London Math. Soc., Vol. 28, 1974, pp. 738-768. Zbl0326.60093MR350881
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.