Lévy processes that can creep downwards never increase

Jean Bertoin

Annales de l'I.H.P. Probabilités et statistiques (1995)

  • Volume: 31, Issue: 2, page 379-391
  • ISSN: 0246-0203

How to cite

top

Bertoin, Jean. "Lévy processes that can creep downwards never increase." Annales de l'I.H.P. Probabilités et statistiques 31.2 (1995): 379-391. <http://eudml.org/doc/77514>.

@article{Bertoin1995,
author = {Bertoin, Jean},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Lévy process; non-increase; downwards creeping},
language = {eng},
number = {2},
pages = {379-391},
publisher = {Gauthier-Villars},
title = {Lévy processes that can creep downwards never increase},
url = {http://eudml.org/doc/77514},
volume = {31},
year = {1995},
}

TY - JOUR
AU - Bertoin, Jean
TI - Lévy processes that can creep downwards never increase
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1995
PB - Gauthier-Villars
VL - 31
IS - 2
SP - 379
EP - 391
LA - eng
KW - Lévy process; non-increase; downwards creeping
UR - http://eudml.org/doc/77514
ER -

References

top
  1. [Ad] O. Adelman, Brownian motion never increases: A new proof to a result of Dvoretzky, Erdös and Kakutani, Israël J. Math., Vol. 50, 1985, pp. 189-192. Zbl0573.60030MR793851
  2. [Al] D.J. Aldous, Probability Approximation via the Poisson Clumping Heuristic, Springer, New York, 1989. Zbl0679.60013MR969362
  3. [Be] J. Bertoin, Increase of a Lévy process with no positive jumps, Stochastics, Vol. 37, 1991, pp. 247-251. Zbl0739.60065MR1149349
  4. [Bi] N.H. Bingham, Fluctuation theory in continuous time, Adv. Appl. Prob., Vol. 7, 1975, pp. 705-766. Zbl0322.60068MR386027
  5. [Bu] C. Burdzy, On nonincrease of Brownian motion, Ann. Prob., Vol. 18, 1990, pp. 978-980. Zbl0719.60086MR1062055
  6. [C-W] K.L. Chung and J.B. Walsh, To reverse a Markov process, Acta Mathematica, Vol. 123, 1969, pp. 225-251. Zbl0187.41302MR258114
  7. [D-E-K] A. Dvoretzky, P. Erdös and S. Kakutani, On nonincrease everywhere of the Brownian motion process, in: Proc. 4th. Berkeley Symp. Math. Stat. and Probab., Vol. II, 1961, pp. 103-116. Zbl0111.15002MR132608
  8. [Fr] B. Fristedt, Sample functions of stochastic processes with stationary independent increments, in: P. NEY and S. PORT Ed., Adv. Probab., Vol. 3, 1974, pp. 241-396, Dekker. Zbl0309.60047MR400406
  9. [G-P] P. Greenwood and J. Pitman, Fluctuation identities for Lévy processes and splitting at the maximum, Adv. Appl. Prob., Vol. 12, 1980, pp. 893-902. Zbl0443.60037MR588409
  10. [Ke] H. Kesten, Hitting probabilities of single points for processes with stationary independent increments, Mem. Amer. Math. Soc., Vol. 93, 1969. Zbl0186.50202MR272059
  11. [Kn] F.B. Knight, Essential of Brownian Notion and Diffusion, Math Survey, Vol. 18, Amer. Math. Soc., 1981, Providence, R.I. Zbl0458.60002MR613983
  12. [Mi-1] P.W. Millar, Exit properties of stochastic processes with stationary independent increments, Trans. Amer. Math. Soc., Vol. 178, 1973, pp. 459-479. Zbl0268.60065MR321198
  13. [Mi-2] P.W. Millar, Zero-one laws and the minimum of a Markov process, Trans. Amer. Math. Soc., Vol. 226, 1977, pp. 365-391. Zbl0381.60062MR433606
  14. [Ne] J. Neveu, Une généralisation des processus à accroissements positifs indépendants, Abh. Math. Sem. Univ. Hamburg, Vol. 25, 1961, pp. 36-61. Zbl0103.36303MR130714
  15. [Ro] L.C.G. Rogers, A new identity for real Lévy processes, Ann. Inst. Henri-Poincaré, Vol. 20, 1984, pp. 20-34. MR740248
  16. [Sh] M.J. Sharpe, General Theory of Markov Processes, Academic Press, Boston, 1989. Zbl0649.60079MR958914
  17. [Wi] D. Williams, Path decomposition and continuity of local time for one-dimensional diffusions, Proc. London Math. Soc., Vol. 28, 1974, pp. 738-768. Zbl0326.60093MR350881

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.