Hardy-Littlewood theory on unimodular groups

N. Th. Varopoulos

Annales de l'I.H.P. Probabilités et statistiques (1995)

  • Volume: 31, Issue: 4, page 669-688
  • ISSN: 0246-0203

How to cite

top

Varopoulos, N. Th.. "Hardy-Littlewood theory on unimodular groups." Annales de l'I.H.P. Probabilités et statistiques 31.4 (1995): 669-688. <http://eudml.org/doc/77524>.

@article{Varopoulos1995,
author = {Varopoulos, N. Th.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {heat kernels; analysis on Lie groups; probability measures on groups},
language = {eng},
number = {4},
pages = {669-688},
publisher = {Gauthier-Villars},
title = {Hardy-Littlewood theory on unimodular groups},
url = {http://eudml.org/doc/77524},
volume = {31},
year = {1995},
}

TY - JOUR
AU - Varopoulos, N. Th.
TI - Hardy-Littlewood theory on unimodular groups
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1995
PB - Gauthier-Villars
VL - 31
IS - 4
SP - 669
EP - 688
LA - eng
KW - heat kernels; analysis on Lie groups; probability measures on groups
UR - http://eudml.org/doc/77524
ER -

References

top
  1. [1] N. Lohout, Inégalités de Sobolev pour les sous-laplaciens de certains groupes unimodulaires, Geom. and Funct. Analysis, 2 (4), 1992, pp. 394-420. Zbl0807.22007MR1191567
  2. [2] Ph. Bougerol, Théorème central limite local sur certains groupes de Lie. Ann. Sci. Ec. Norm. Sup.4e sér., 14, 1981, pp. 403-432. Zbl0488.60013MR654204
  3. [3] N.Th. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and geometry on groups, Cambridge tracts in Math., n° 100, C.U.P., 1993. Zbl0813.22003MR1218884
  4. [4] N. Lohoué, Estimation Lp des coefficients de représentation et opérateurs de convolution. Advances in Math., 38, 1980, pp. 178-222. Zbl0463.43003MR597197
  5. [5] N.Th. Varopoulos, Théorie de Hardy-Littlewood sur les groupes de Lie, C.R.A.S., t. 316 (I), p. 999-1003, 1993. Zbl0789.22022MR1222961
  6. [6] L. Hörmander, Estimates for translation invariant operators in Lp spaces, Acta Math., 104, 1960, pp. 93-139. Zbl0093.11402MR121655
  7. [7] V.S. Varadarajan, Lie groups, Lie algebras and their representations, Prentice Hall. Zbl0371.22001MR376938
  8. [8] N.Th. Varopoulos, Wiener-Hopf Theory and non unimodular groups, Journal of Funct. Analysis, 120 (2), 1994, pp. 467-483. Zbl0849.22008MR1266317
  9. [9] D. Robinson, Elliptic operators on Lie groups, Oxford University Press, 1991. Zbl0747.47030MR1144020
  10. [10] N.Th. Varopoulos, Diffusion on Lie groups, Can. J. of Math., 46 (2), 1994, pp. 438-448. Zbl0845.22006MR1271225
  11. [11] N.Th. Varopoulos, Diffusion on Lie groups (II), Can. J. of Math., 46 (5), 1994, pp. 1073-1092. Zbl0829.22013MR1295132
  12. [12] N.Th. Varopoulos, Random walks and Brownian motion on manifoldsSymposia Mathematica, XXIX, 1987, pp. 97-109. Zbl0651.60013MR951181
  13. [13] M. Cowling, The Kunze-Stein phenomenon, Annals of Mathematics, 107, 1978, pp. 209- 234. Zbl0363.22007MR507240
  14. [14] M. Gromov, Structures métriques pour les variétés riemanniennes, Cedre/Fernand Nathan, 1981. Zbl0509.53034MR682063
  15. [15] J. Milnor, A note on curvature and the fundamental group, J. of Diff. Geometry, 2, 1968, pp. 1-7. Zbl0162.25401MR232311
  16. [16] N.Th. Varopoulos, Théorème de Hardy-Littlewood sur les groupes de Lie, C.R.A.S., t. 318 (I), 1994, pp. 27-30. Zbl0830.43007MR1260530
  17. [17] Y. Guivarc'h, Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. France, 101, 1973, pp. 333-379. Zbl0294.43003MR369608

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.