Bornes inférieures pour les marches aléatoires sur les groupes p-adiques moyennables

Sami Mustapha

Annales de l'I.H.P. Probabilités et statistiques (2006)

  • Volume: 42, Issue: 1, page 81-88
  • ISSN: 0246-0203

How to cite

top

Mustapha, Sami. "Bornes inférieures pour les marches aléatoires sur les groupes p-adiques moyennables." Annales de l'I.H.P. Probabilités et statistiques 42.1 (2006): 81-88. <http://eudml.org/doc/77888>.

@article{Mustapha2006,
author = {Mustapha, Sami},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {-adic analysis},
language = {fre},
number = {1},
pages = {81-88},
publisher = {Elsevier},
title = {Bornes inférieures pour les marches aléatoires sur les groupes p-adiques moyennables},
url = {http://eudml.org/doc/77888},
volume = {42},
year = {2006},
}

TY - JOUR
AU - Mustapha, Sami
TI - Bornes inférieures pour les marches aléatoires sur les groupes p-adiques moyennables
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2006
PB - Elsevier
VL - 42
IS - 1
SP - 81
EP - 88
LA - fre
KW - -adic analysis
UR - http://eudml.org/doc/77888
ER -

References

top
  1. [1] G. Alexopoulos, A lower estimate for central probabilities on polycyclic groups, Canad. J. Math.44 (1992) 897-910. Zbl0762.31003MR1186471
  2. [2] G. Bachman, Introduction to p-Adic Numbers and Valuation Theory, Academic Press, 1964. Zbl0192.40103MR169847
  3. [3] A. Borel, J. Tits, Groupes réductifs, Publ. Math. IHES27 (1965) 55-150. Zbl0145.17402MR207712
  4. [4] J.W.S. Cassels, Local Fields, Cambridge University Press, 1986. Zbl0595.12006MR861410
  5. [5] C. Chevalley, Théorie des Groupes de Lie, tome III, Hermann, 1955. Zbl0068.02102MR68552
  6. [6] Th. Coulhon, Large time behaviour of heat kernels on Riemannian manifolds: fast and slow decays, in: Journées équations aux dérivées partielles, St-Jean-de-Monts, 1998, pp. 1-12. Zbl1021.35014MR1640375
  7. [7] Th. Coulhon, A. Grigor'yan, On diagonal lower bounds for heat kernels on non-compact manifolds and Markov chains, Duke Math. J.89 (1) (1997) 133-199. Zbl0920.58064MR1458975
  8. [8] Th. Coulhon, A. Grigor'yan, Ch. Pittet, A geometric approach to on-diagonal heat kernel lower bounds on groups, Ann. Inst. Fourier51 (6) (2001) 1763-1827. Zbl1137.58307MR1871289
  9. [9] A. Grigor'yan, Heat kernel upper bounds on a complete non-compact manifold, Rev. Mat. Iberoamericana10 (2) (1994) 395-452. Zbl0810.58040MR1286481
  10. [10] A. Grigor'yan, Gaussian upper bounds for the heat kernel on arbitrary manifolds, J. Differential Geom.45 (1) (1997) 33-52. Zbl0865.58042MR1443330
  11. [11] R.I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat.49 (5) (1984) 939-985, English translation: Math. USSR-Izv. 25 (1985), 259–300. Zbl0583.20023MR764305
  12. [12] Y. Guivarc'h, Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. France101 (1973) 333-379. Zbl0294.43003MR369608
  13. [13] W. Hebisch, On heat kernels on Lie groups, Math. Z.210 (1992) 593-605. Zbl0792.22007MR1175724
  14. [14] W. Hebisch, L. Saloff-Coste, Gaussian estimates for Markov chains and random walks on groups, Ann. Probab.21 (1993) 673-709. Zbl0776.60086MR1217561
  15. [15] N. Jacobson, Lie Algebras, Interscience, 1962. Zbl0121.27504MR143793
  16. [16] J. Jenkins, Growth of connected locally compact groups, J. Funct. Anal.12 (1973) 113-127. Zbl0247.43001MR349895
  17. [17] S. Mustapha, Random walks on unimodular p-adic groups, Preprint. Zbl1076.60035MR2134485
  18. [18] S. Mustapha, Gaussian estimates for heat kernels on Lie groups, Math. Proc. Cambridge Philos. Soc.128 (1) (2000) 45-64. Zbl0947.22007MR1724427
  19. [19] Ch. Pittet, Følner sequences on polycyclic groups, Rev. Mat. Iberoamericana11 (3) (1995) 675-686. Zbl0842.20035MR1363210
  20. [20] Ch. Pittet, L. Saloff-Coste, A survey on the relationship between volume growth, isoperimetry, and the behavior of simple random walk on Cayley graphs, with examples, Preprint, 1997. 
  21. [21] Ch. Pittet, L. Saloff-Coste, Amenable groups, isoperimetric profiles and random walks, in: Geometric Group Theory Down Under (Canberra, 1996), de Gruyter, Berlin, 1999, pp. 293-316. Zbl0934.43001MR1714851
  22. [22] Ch. Pittet, L. Saloff-Coste, On random walks on wreath products, Ann. Probab.30 (2) (2002) 1-30. Zbl1021.60004MR1905862
  23. [23] Ch. Pittet, L. Saloff-Coste, Random walks on finite rank solvable groups, J. Eur. Math. Soc.4 (2003) 313-342. Zbl1057.20026MR2017850
  24. [24] C.R.E. Raja, On classes of p-adic Lie groups, New York J. Math.5 (1999) 101-105. Zbl0923.22006MR1703206
  25. [25] H. Rieter, Classical Harmonic Analysis and Locally Compact Groups, Oxford Math. Monograph, Oxford University Press, 1968. Zbl0165.15601MR306811
  26. [26] J.-P. Serre, Lie Algebras and Lie Groups, Benjamin, New York, 1965. Zbl0132.27803MR218496
  27. [27] T.A. Springer, Linear algebraic groups, in: Parshin A.N., Shafarevich I.R. (Eds.), Algebraic Geometry IV, Springer-Verlag, 1993. Zbl0789.20044MR1309681
  28. [28] N.Th. Varopoulos, Random walks on soluble groups, Bull. Sci. Math.107 (1983) 337-344. Zbl0532.60009MR732356
  29. [29] N.Th. Varopoulos, A potential theoritic property of soluble groups, Bull. Sci. Math.108 (1983) 263-273. Zbl0546.60008MR771912
  30. [30] N.Th. Varopoulos, Groups of superpolynomial growth, in: Igasi S. (Ed.), Harmonic Analysis (Sendai, 1990), ICM Satellite Conference Proceedings, Springer, 1991. Zbl0802.43002MR1261441
  31. [31] N.Th. Varopoulos, Diffusion on Lie groups, Canad. J. Math.46 (2) (1994) 438-448. Zbl0845.22006MR1271225
  32. [32] N.Th. Varopoulos, Diffusion on Lie groups II, Canad. J. Math.46 (5) (1994) 1073-1092. Zbl0829.22013MR1295132
  33. [33] N.Th. Varopoulos, Hardy–Littlewood theory on unimodular groups, Ann. Inst. H. Poincaré Probab. Statist.31 (4) (1995) 669-688. Zbl0844.60006MR1355612
  34. [34] N.Th. Varopoulos, The heat kernel on Lie groups, Rev. Mat. Iberoamericana12 (1) (1996) 147-186. Zbl0853.22006MR1387589
  35. [35] N.Th. Varopoulos, L. Saloff-Coste, Th. Coulhon, Analysis and Geomety on Groups, Cambridge Tracts in Math., vol. 102, Cambridge University Press, 1993. MR1218884
  36. [36] W. Woess, Random Walks on Infinite Graphs and Groups, Cambridge Tracts in Math., vol. 138, Cambridge University Press, 2000. Zbl0951.60002MR1743100

NotesEmbed ?

top

You must be logged in to post comments.