Bornes inférieures pour les marches aléatoires sur les groupes p-adiques moyennables

Sami Mustapha

Annales de l'I.H.P. Probabilités et statistiques (2006)

  • Volume: 42, Issue: 1, page 81-88
  • ISSN: 0246-0203

How to cite

top

Mustapha, Sami. "Bornes inférieures pour les marches aléatoires sur les groupes p-adiques moyennables." Annales de l'I.H.P. Probabilités et statistiques 42.1 (2006): 81-88. <http://eudml.org/doc/77888>.

@article{Mustapha2006,
author = {Mustapha, Sami},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {-adic analysis},
language = {fre},
number = {1},
pages = {81-88},
publisher = {Elsevier},
title = {Bornes inférieures pour les marches aléatoires sur les groupes p-adiques moyennables},
url = {http://eudml.org/doc/77888},
volume = {42},
year = {2006},
}

TY - JOUR
AU - Mustapha, Sami
TI - Bornes inférieures pour les marches aléatoires sur les groupes p-adiques moyennables
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2006
PB - Elsevier
VL - 42
IS - 1
SP - 81
EP - 88
LA - fre
KW - -adic analysis
UR - http://eudml.org/doc/77888
ER -

References

top
  1. [1] G. Alexopoulos, A lower estimate for central probabilities on polycyclic groups, Canad. J. Math.44 (1992) 897-910. Zbl0762.31003MR1186471
  2. [2] G. Bachman, Introduction to p-Adic Numbers and Valuation Theory, Academic Press, 1964. Zbl0192.40103MR169847
  3. [3] A. Borel, J. Tits, Groupes réductifs, Publ. Math. IHES27 (1965) 55-150. Zbl0145.17402MR207712
  4. [4] J.W.S. Cassels, Local Fields, Cambridge University Press, 1986. Zbl0595.12006MR861410
  5. [5] C. Chevalley, Théorie des Groupes de Lie, tome III, Hermann, 1955. Zbl0068.02102MR68552
  6. [6] Th. Coulhon, Large time behaviour of heat kernels on Riemannian manifolds: fast and slow decays, in: Journées équations aux dérivées partielles, St-Jean-de-Monts, 1998, pp. 1-12. Zbl1021.35014MR1640375
  7. [7] Th. Coulhon, A. Grigor'yan, On diagonal lower bounds for heat kernels on non-compact manifolds and Markov chains, Duke Math. J.89 (1) (1997) 133-199. Zbl0920.58064MR1458975
  8. [8] Th. Coulhon, A. Grigor'yan, Ch. Pittet, A geometric approach to on-diagonal heat kernel lower bounds on groups, Ann. Inst. Fourier51 (6) (2001) 1763-1827. Zbl1137.58307MR1871289
  9. [9] A. Grigor'yan, Heat kernel upper bounds on a complete non-compact manifold, Rev. Mat. Iberoamericana10 (2) (1994) 395-452. Zbl0810.58040MR1286481
  10. [10] A. Grigor'yan, Gaussian upper bounds for the heat kernel on arbitrary manifolds, J. Differential Geom.45 (1) (1997) 33-52. Zbl0865.58042MR1443330
  11. [11] R.I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat.49 (5) (1984) 939-985, English translation: Math. USSR-Izv. 25 (1985), 259–300. Zbl0583.20023MR764305
  12. [12] Y. Guivarc'h, Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. France101 (1973) 333-379. Zbl0294.43003MR369608
  13. [13] W. Hebisch, On heat kernels on Lie groups, Math. Z.210 (1992) 593-605. Zbl0792.22007MR1175724
  14. [14] W. Hebisch, L. Saloff-Coste, Gaussian estimates for Markov chains and random walks on groups, Ann. Probab.21 (1993) 673-709. Zbl0776.60086MR1217561
  15. [15] N. Jacobson, Lie Algebras, Interscience, 1962. Zbl0121.27504MR143793
  16. [16] J. Jenkins, Growth of connected locally compact groups, J. Funct. Anal.12 (1973) 113-127. Zbl0247.43001MR349895
  17. [17] S. Mustapha, Random walks on unimodular p-adic groups, Preprint. Zbl1076.60035MR2134485
  18. [18] S. Mustapha, Gaussian estimates for heat kernels on Lie groups, Math. Proc. Cambridge Philos. Soc.128 (1) (2000) 45-64. Zbl0947.22007MR1724427
  19. [19] Ch. Pittet, Følner sequences on polycyclic groups, Rev. Mat. Iberoamericana11 (3) (1995) 675-686. Zbl0842.20035MR1363210
  20. [20] Ch. Pittet, L. Saloff-Coste, A survey on the relationship between volume growth, isoperimetry, and the behavior of simple random walk on Cayley graphs, with examples, Preprint, 1997. 
  21. [21] Ch. Pittet, L. Saloff-Coste, Amenable groups, isoperimetric profiles and random walks, in: Geometric Group Theory Down Under (Canberra, 1996), de Gruyter, Berlin, 1999, pp. 293-316. Zbl0934.43001MR1714851
  22. [22] Ch. Pittet, L. Saloff-Coste, On random walks on wreath products, Ann. Probab.30 (2) (2002) 1-30. Zbl1021.60004MR1905862
  23. [23] Ch. Pittet, L. Saloff-Coste, Random walks on finite rank solvable groups, J. Eur. Math. Soc.4 (2003) 313-342. Zbl1057.20026MR2017850
  24. [24] C.R.E. Raja, On classes of p-adic Lie groups, New York J. Math.5 (1999) 101-105. Zbl0923.22006MR1703206
  25. [25] H. Rieter, Classical Harmonic Analysis and Locally Compact Groups, Oxford Math. Monograph, Oxford University Press, 1968. Zbl0165.15601MR306811
  26. [26] J.-P. Serre, Lie Algebras and Lie Groups, Benjamin, New York, 1965. Zbl0132.27803MR218496
  27. [27] T.A. Springer, Linear algebraic groups, in: Parshin A.N., Shafarevich I.R. (Eds.), Algebraic Geometry IV, Springer-Verlag, 1993. Zbl0789.20044MR1309681
  28. [28] N.Th. Varopoulos, Random walks on soluble groups, Bull. Sci. Math.107 (1983) 337-344. Zbl0532.60009MR732356
  29. [29] N.Th. Varopoulos, A potential theoritic property of soluble groups, Bull. Sci. Math.108 (1983) 263-273. Zbl0546.60008MR771912
  30. [30] N.Th. Varopoulos, Groups of superpolynomial growth, in: Igasi S. (Ed.), Harmonic Analysis (Sendai, 1990), ICM Satellite Conference Proceedings, Springer, 1991. Zbl0802.43002MR1261441
  31. [31] N.Th. Varopoulos, Diffusion on Lie groups, Canad. J. Math.46 (2) (1994) 438-448. Zbl0845.22006MR1271225
  32. [32] N.Th. Varopoulos, Diffusion on Lie groups II, Canad. J. Math.46 (5) (1994) 1073-1092. Zbl0829.22013MR1295132
  33. [33] N.Th. Varopoulos, Hardy–Littlewood theory on unimodular groups, Ann. Inst. H. Poincaré Probab. Statist.31 (4) (1995) 669-688. Zbl0844.60006MR1355612
  34. [34] N.Th. Varopoulos, The heat kernel on Lie groups, Rev. Mat. Iberoamericana12 (1) (1996) 147-186. Zbl0853.22006MR1387589
  35. [35] N.Th. Varopoulos, L. Saloff-Coste, Th. Coulhon, Analysis and Geomety on Groups, Cambridge Tracts in Math., vol. 102, Cambridge University Press, 1993. MR1218884
  36. [36] W. Woess, Random Walks on Infinite Graphs and Groups, Cambridge Tracts in Math., vol. 138, Cambridge University Press, 2000. Zbl0951.60002MR1743100

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.