Effet d'un bruit blanc sur l'oscillateur harmonique de dimension d

Nathanaël Enriquez

Annales de l'I.H.P. Probabilités et statistiques (1996)

  • Volume: 32, Issue: 5, page 601-622
  • ISSN: 0246-0203

How to cite

top

Enriquez, Nathanaël. "Effet d'un bruit blanc sur l'oscillateur harmonique de dimension d." Annales de l'I.H.P. Probabilités et statistiques 32.5 (1996): 601-622. <http://eudml.org/doc/77548>.

@article{Enriquez1996,
author = {Enriquez, Nathanaël},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {isotropic harmonic oscillator; Lyapunov exponent; perturbation method},
language = {fre},
number = {5},
pages = {601-622},
publisher = {Gauthier-Villars},
title = {Effet d'un bruit blanc sur l'oscillateur harmonique de dimension d},
url = {http://eudml.org/doc/77548},
volume = {32},
year = {1996},
}

TY - JOUR
AU - Enriquez, Nathanaël
TI - Effet d'un bruit blanc sur l'oscillateur harmonique de dimension d
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1996
PB - Gauthier-Villars
VL - 32
IS - 5
SP - 601
EP - 622
LA - fre
KW - isotropic harmonic oscillator; Lyapunov exponent; perturbation method
UR - http://eudml.org/doc/77548
ER -

References

top
  1. [1] L. Arnold, G. Papanicolaou and V. Wihstutz, Asymptotic analysis of the Lyapunov exponent and rotation number of the random oscillator and applications, SIAM Journal Appl. Math., Vol. 46, 1986, p. 427-449. Zbl0603.60051MR841459
  2. [2] E.I. Auslender and G.N. Mil'shtein, Lyapunov expansions of the Lyapunov index for linear stochastic systems with small noise, Prikl. Math. Mekh., Vol. 46, 1982, p. 358-365. En Russe. J. Appl. Math. Mech., 1983, p. 277-283. En Anglais. Zbl0522.34053MR709667
  3. [3] N. Enriquez, Effet d'un bruit blanc sur l'oscillateur harmonique de dimension d, Note au CRAS, 1994. Zbl0794.60057
  4. [4] G.B. Gurevitch, Foundations of the theory of algebraic invariants, Groningen: Noordhoff, 1964. Zbl0128.24601MR183733
  5. [5] Y. Le Jan, On isotropic brownian motion, ZfW, Vol. 70, 1985, p. 609-620. Zbl0576.60072MR807340
  6. [6] W. Magnus, F. Oberhettinger and R.P. Soni, Formulas and theorems for the special functions of mathematical physics, Springer-Verlag, New-York Inc., 1966, Chap 2. Zbl0143.08502MR232968
  7. [7] Oseledec, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical system, Trans. Moscow Math. Soc., Vol. 19, 1968, p. 197-230. Zbl0236.93034
  8. [8] E. Pardoux and V. Wihstutz, Lyapunov exponent and rotationnumber of two-dimensional linear stochastic systems with small diffusion noise, SIAM Journal Appl. Math., Vol. 48, 1988, p. 442-457. Zbl0641.60065MR933045
  9. [9] M. Pinsky, Extremal character of the Lyapunov exponent of the stochastic harmonic oscillator, Annals of Appl. Prob., Vol. 2, 1992, p. 942-950. Zbl0788.60072MR1189424
  10. [10] M. Pinsky and V. Wihstutz, Lyapunov exponents of nilpotent Itô systems, Stochastics, Vol. 25, 1988, p. 43-57. Zbl0654.60043MR1008234

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.