Hydrodynamic limit of mean zero asymmetric zero range processes in infinite volume

C. Landim; M. Mourragui

Annales de l'I.H.P. Probabilités et statistiques (1997)

  • Volume: 33, Issue: 1, page 65-82
  • ISSN: 0246-0203

How to cite

top

Landim, C., and Mourragui, M.. "Hydrodynamic limit of mean zero asymmetric zero range processes in infinite volume." Annales de l'I.H.P. Probabilités et statistiques 33.1 (1997): 65-82. <http://eudml.org/doc/77561>.

@article{Landim1997,
author = {Landim, C., Mourragui, M.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {particle systems; hydrodynamic limit; asymmetric zero range processes; entropy production bound},
language = {eng},
number = {1},
pages = {65-82},
publisher = {Gauthier-Villars},
title = {Hydrodynamic limit of mean zero asymmetric zero range processes in infinite volume},
url = {http://eudml.org/doc/77561},
volume = {33},
year = {1997},
}

TY - JOUR
AU - Landim, C.
AU - Mourragui, M.
TI - Hydrodynamic limit of mean zero asymmetric zero range processes in infinite volume
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1997
PB - Gauthier-Villars
VL - 33
IS - 1
SP - 65
EP - 82
LA - eng
KW - particle systems; hydrodynamic limit; asymmetric zero range processes; entropy production bound
UR - http://eudml.org/doc/77561
ER -

References

top
  1. [1] A. Andjel, Invariant measures for the zero range process, Ann. Probab., Vol. 10, 1982, pp. 525-547. Zbl0492.60096MR659526
  2. [2] H. Brézis and M.G. Crandall, Uniqueness of solutions of the initial-value problem for ut - Δφ(u) = 0, J. Math. Pures et appl., Vol. 58, 1979, pp. 153-163. Zbl0408.35054MR539218
  3. [3] A. De Masi, P. Ferrari and J. Lebowitz, Reaction diffusion equations for interacting particle systems, J. Stat. Phys., Vol. 55, 1986, pp. 523-578. Zbl0629.60107
  4. [4] J. Fritz, On the hydrodynamic limit of a one dimensional Ginzburg-Landau lattice model: the a priori bounds, J. Stat. Phys., Vol. 47, 1987, pp. 551-572. Zbl0681.76089MR894407
  5. [5] J. Fritz, On the hydrodynamic limit of a Ginzburg-Landau lattice model, Prob. Th. Rel Fields, Vol. 81, 1989, pp. 291-318. Zbl0665.60108MR982659
  6. [6] J. Fritz, On the diffusive nature of the entropy flow in finite systems: remarks to a paper by Guo-Papanicolaou-Varadhan, Commun. Math. Phys., 133, 1990, pp. 331-352. Zbl0719.60122MR1090429
  7. [7] M.Z. Guo, Papanicolaou G.C. and S.R.S. Varaohan, Nonlinear diffusion limit for a system with nearest neighbor interactions, Comm. Math. Phys., Vol. 118, 1988, pp. 31-59. Zbl0652.60107MR954674
  8. [8] A. Galves, C. Kipnis, C. Marchioro and E. Presutti, Nonequilibrium measures which exhibit a temperature gradient: study of a model, Commun. Math. Phys., Vol. 81, 1981, pp. 127-148. Zbl0465.60089MR630334
  9. [9] H. RostNonequilibrium behavior of many particle systems: density profile and local equilibria.Z. Wahrs. Verw. Gebiete, Vol. 58, 1981, pp. 41-53. Zbl0451.60097MR635270
  10. [10] H. Spohn, Large Scale Dynamics of Interacting Particle Systems, Text and Monographs in Physics, Springer-Verlag, New York, 1991. Zbl0742.76002
  11. [11] D. Wick, Entropy arguments in the study of hydrodynamic limits, CARR Reports in Mathematical Physics3/88. 
  12. [12] H.T. Yau, Metastability of Ginzburg-Landau model with a conservation law, J. Stat. Phys., Vol. 74, 1994, pp. 705-742. Zbl0834.35120MR1263386

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.