The probability that brownian motion almost contains a line

Robin Pemantle

Annales de l'I.H.P. Probabilités et statistiques (1997)

  • Volume: 33, Issue: 2, page 147-165
  • ISSN: 0246-0203

How to cite

top

Pemantle, Robin. "The probability that brownian motion almost contains a line." Annales de l'I.H.P. Probabilités et statistiques 33.2 (1997): 147-165. <http://eudml.org/doc/77563>.

@article{Pemantle1997,
author = {Pemantle, Robin},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {planar Brownian motion; range of trajectory; Wiener sausage},
language = {eng},
number = {2},
pages = {147-165},
publisher = {Gauthier-Villars},
title = {The probability that brownian motion almost contains a line},
url = {http://eudml.org/doc/77563},
volume = {33},
year = {1997},
}

TY - JOUR
AU - Pemantle, Robin
TI - The probability that brownian motion almost contains a line
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1997
PB - Gauthier-Villars
VL - 33
IS - 2
SP - 147
EP - 165
LA - eng
KW - planar Brownian motion; range of trajectory; Wiener sausage
UR - http://eudml.org/doc/77563
ER -

References

top
  1. [1] 1. Benjamini R., Pemantle and Y. Peres, Martin capacity for Markov chains, Ann. Probab., Vol. 23, 1994, pp. 1332-1346. Zbl0840.60068MR1349175
  2. [2] K. Burdzy, Labyrinth dimension of Brownian trace, Preprint, 1994. Zbl0856.60078MR1369798
  3. [3] K. Burdzy and G. Lawler, Nonintersection exponents for Brownian paths II: estimates and application to a random fractal. Ann. Probab. , Vol. 18, 1990, pp. 981-1009. Zbl0719.60085MR1062056
  4. [4] E. Csáki, An integral test for the supremum of Wiener local time, Prob. Th. Rel. Fields, Vol. 83, 1989, pp. 207-217. Zbl0677.60087MR1012499
  5. [5] A. Dvoretzky, P. Erdös and S. Kakutani, Double points of paths of Brownian motion in n-space, Acta Sci. Math., Vol. 12, 1950, pp. 75-81. Zbl0036.09001MR34972
  6. [6] P.J. Fitzsimmons and T. Salisbury, Capacity and energy for multiparameter Markov processes, Ann. Inst. Henri Poincaré, Probab., Vol. 25, 1989, pp. 325-350. Zbl0689.60071MR1023955
  7. [7] S. Kakutani, Two dimensional Brownian motion and harmonic functions, Proc. Imp. Acad. Tokyo, Vol. 20, 1944, pp. 648-652. Zbl0063.03107MR14646
  8. [8] G. Lawler, On the covering time of a disc by simple random walk in two dimensions. In: Seminar on stochastic processes, 1992, R. BASS and K. BURDZY managing editors, Birkhäuser: Boston. Zbl0789.60019MR1278083
  9. [9] J.F. Le Gall, Some properties of planar Brownian motion, Springer Lecture Notes in Mathematics, Vol. 1527, 1991, pp. 112-234. MR1229519
  10. [10] P. Lévy, Le mouvement brownien plan, Amer. J. Math., 1940, Vol. 62, pp. 487-550. Zbl0024.13906MR2734JFM66.0619.02
  11. [11] T. Meyre and W. Werner, Estimation asymptotique du rayon du plus grand disque couvert par la saucisse de Wiener plane, Stochastics and Stochastics Reports, Vol. 48, 1994, pp. 45-59. Zbl0828.60066MR1786191
  12. [12] D. Ray, Sojourn times and the exact Hausdorff measure of the sample path for planar Brownian motion, Trans. AMS, Vol. 106, 1963, pp. 436-444. Zbl0119.14602MR145599
  13. [13] P. Révész, Estimates on the largest disc covered by a random walk, Ann. Probab., Vol. 18, 1990, pp. 1784-1789. Zbl0721.60071MR1071825
  14. [14] T. Salisbury, Energy, and intersections of Markov chains. In: IMA volume on Random discrete structures, D. ALDOUS and R. PEMANTLE Eds., 1996. Springer: Berlin. Zbl0845.60068MR1395618

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.