The probability that brownian motion almost contains a line
Annales de l'I.H.P. Probabilités et statistiques (1997)
- Volume: 33, Issue: 2, page 147-165
- ISSN: 0246-0203
Access Full Article
topHow to cite
topPemantle, Robin. "The probability that brownian motion almost contains a line." Annales de l'I.H.P. Probabilités et statistiques 33.2 (1997): 147-165. <http://eudml.org/doc/77563>.
@article{Pemantle1997,
author = {Pemantle, Robin},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {planar Brownian motion; range of trajectory; Wiener sausage},
language = {eng},
number = {2},
pages = {147-165},
publisher = {Gauthier-Villars},
title = {The probability that brownian motion almost contains a line},
url = {http://eudml.org/doc/77563},
volume = {33},
year = {1997},
}
TY - JOUR
AU - Pemantle, Robin
TI - The probability that brownian motion almost contains a line
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1997
PB - Gauthier-Villars
VL - 33
IS - 2
SP - 147
EP - 165
LA - eng
KW - planar Brownian motion; range of trajectory; Wiener sausage
UR - http://eudml.org/doc/77563
ER -
References
top- [1] 1. Benjamini R., Pemantle and Y. Peres, Martin capacity for Markov chains, Ann. Probab., Vol. 23, 1994, pp. 1332-1346. Zbl0840.60068MR1349175
- [2] K. Burdzy, Labyrinth dimension of Brownian trace, Preprint, 1994. Zbl0856.60078MR1369798
- [3] K. Burdzy and G. Lawler, Nonintersection exponents for Brownian paths II: estimates and application to a random fractal. Ann. Probab. , Vol. 18, 1990, pp. 981-1009. Zbl0719.60085MR1062056
- [4] E. Csáki, An integral test for the supremum of Wiener local time, Prob. Th. Rel. Fields, Vol. 83, 1989, pp. 207-217. Zbl0677.60087MR1012499
- [5] A. Dvoretzky, P. Erdös and S. Kakutani, Double points of paths of Brownian motion in n-space, Acta Sci. Math., Vol. 12, 1950, pp. 75-81. Zbl0036.09001MR34972
- [6] P.J. Fitzsimmons and T. Salisbury, Capacity and energy for multiparameter Markov processes, Ann. Inst. Henri Poincaré, Probab., Vol. 25, 1989, pp. 325-350. Zbl0689.60071MR1023955
- [7] S. Kakutani, Two dimensional Brownian motion and harmonic functions, Proc. Imp. Acad. Tokyo, Vol. 20, 1944, pp. 648-652. Zbl0063.03107MR14646
- [8] G. Lawler, On the covering time of a disc by simple random walk in two dimensions. In: Seminar on stochastic processes, 1992, R. BASS and K. BURDZY managing editors, Birkhäuser: Boston. Zbl0789.60019MR1278083
- [9] J.F. Le Gall, Some properties of planar Brownian motion, Springer Lecture Notes in Mathematics, Vol. 1527, 1991, pp. 112-234. MR1229519
- [10] P. Lévy, Le mouvement brownien plan, Amer. J. Math., 1940, Vol. 62, pp. 487-550. Zbl0024.13906MR2734JFM66.0619.02
- [11] T. Meyre and W. Werner, Estimation asymptotique du rayon du plus grand disque couvert par la saucisse de Wiener plane, Stochastics and Stochastics Reports, Vol. 48, 1994, pp. 45-59. Zbl0828.60066MR1786191
- [12] D. Ray, Sojourn times and the exact Hausdorff measure of the sample path for planar Brownian motion, Trans. AMS, Vol. 106, 1963, pp. 436-444. Zbl0119.14602MR145599
- [13] P. Révész, Estimates on the largest disc covered by a random walk, Ann. Probab., Vol. 18, 1990, pp. 1784-1789. Zbl0721.60071MR1071825
- [14] T. Salisbury, Energy, and intersections of Markov chains. In: IMA volume on Random discrete structures, D. ALDOUS and R. PEMANTLE Eds., 1996. Springer: Berlin. Zbl0845.60068MR1395618
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.