The asymptotic distribution of the bootstrap sample mean of an infinitesimal array

J. A. Cuesta-Albertos; C. Matrán

Annales de l'I.H.P. Probabilités et statistiques (1998)

  • Volume: 34, Issue: 1, page 23-48
  • ISSN: 0246-0203

How to cite

top

Cuesta-Albertos, J. A., and Matrán, C.. "The asymptotic distribution of the bootstrap sample mean of an infinitesimal array." Annales de l'I.H.P. Probabilités et statistiques 34.1 (1998): 23-48. <http://eudml.org/doc/77593>.

@article{Cuesta1998,
author = {Cuesta-Albertos, J. A., Matrán, C.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {bootstrap of sample means; infinitely divisible limit law; Poisson random variable; conditional limit theorem; central limit theorem},
language = {eng},
number = {1},
pages = {23-48},
publisher = {Gauthier-Villars},
title = {The asymptotic distribution of the bootstrap sample mean of an infinitesimal array},
url = {http://eudml.org/doc/77593},
volume = {34},
year = {1998},
}

TY - JOUR
AU - Cuesta-Albertos, J. A.
AU - Matrán, C.
TI - The asymptotic distribution of the bootstrap sample mean of an infinitesimal array
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1998
PB - Gauthier-Villars
VL - 34
IS - 1
SP - 23
EP - 48
LA - eng
KW - bootstrap of sample means; infinitely divisible limit law; Poisson random variable; conditional limit theorem; central limit theorem
UR - http://eudml.org/doc/77593
ER -

References

top
  1. [1] A. Araujo and E. Giné, The Central Limit Theorem for Real and Banach Valued Random Variables. Wiley, 1980, New York. Zbl0457.60001MR576407
  2. [2] M. Arcones and E. Giné, The Bootstrap of the Mean with Arbitrary Bootstrap Sample Size. Ann. Inst. Henri Poincaré, Prob. Stat., Vol. 25, 1989, pp. 457-481. Zbl0712.62015MR1045246
  3. [3] M. Arcones and E. Giné, Additions and Correction to "the Bootstrap of the Mean with Arbitrary Bootstrap Sample Size". Ann. Inst. Henri Poincaré, Prob. Stat., Vol. 27, 1991, pp. 583-595. Zbl0747.62019MR1141249
  4. [4] K.B. Athreya, Bootstrap of the Mean in the Infinite Variance Case. Technical Report 86-22, Dept. of Statistics, 1984, Iowa State University. Zbl0628.62042
  5. [5] K.B. Athreya, Bootstrap of the Mean in the Infinite Variance Case. II. Technical Report 86-21, Dept. of Statistics, 1985, Iowa State University. 
  6. [6] K.B. Athreya, Bootstrap of the Mean in the Infinite Variance Case. Ann. Statist., Vol. 15, 1987, pp. 724-731. Zbl0628.62042MR888436
  7. [7] P.J. Bickel and D.A. Freedman, Some Asymptotic Theory for the Bootstrap. Ann. Statist., Vol. 9, 1981, pp. 1196-1217. Zbl0449.62034MR630103
  8. [8] P.J. Bickel, F. Goetze and W.R. Van Zwet, Resampling Fewer than n Observations: Gains, Losses and Remedies for Losses, 1994 Preprint. 
  9. [9] P. Deheuvels, D.M. Mason and G.R. Shorack, Some Results on the Influence of Extremes on the Bootstrap. Ann. Inst. Henri Poincaré, Prob. Stat., Vol. 29, 1993, pp. 83-103. Zbl0774.62042MR1204519
  10. [10] B.V. Gnedenko and A.N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables., 1954, Addison-Wesley. Mass. Zbl0056.36001MR62975
  11. [11] P. Hall, Asymptotic Properties of the Bootstrap for Heavy Tailed Distributions. Ann. Statist. Vol. 18, 1990, pp. 1342-1360. Zbl0714.62035MR1062071
  12. [12] P. Hall and Y. Jing Bing, Comparison of Bootstrap and Asymptotic Approximations to the Distribution of a Heavy-Tailed Mean, 1993, Preprint. MR666016
  13. [13] K. Knight, On the bootstrap of the sample mean in the infinite variance case. Ann. Statist. Vol. 17, 1989, pp. 1168-1175. Zbl0687.62017MR1015144
  14. [14] E. Mammen, Bootstrap, wild bootstrap, and asymptotic normality. Probab. Theory Relat. Fields Vol. 93, 1992, pp. 439-455. Zbl0766.62021MR1183886
  15. [15] D. Politis and J. Romano, Large Sample Confidence Regions Based on Subsamples under Minimal Assumptions. Ann. Statist. Vol. 22, 1994, pp. 2031-2050. Zbl0828.62044MR1329181
  16. [16] J.W.H. Swanepoel, J. W. H., A Note in Proving that the (Modified) Bootstrap Works. Commun. Statist. Theory Meth., Vol. 15, 1986, pp. 3193-3203. Zbl0623.62041MR860478

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.