Some results on the influence of extremes on the bootstrap

Paul Deheuvels; David M. Mason; Galen R. Shorack

Annales de l'I.H.P. Probabilités et statistiques (1993)

  • Volume: 29, Issue: 1, page 83-103
  • ISSN: 0246-0203

How to cite

top

Deheuvels, Paul, Mason, David M., and Shorack, Galen R.. "Some results on the influence of extremes on the bootstrap." Annales de l'I.H.P. Probabilités et statistiques 29.1 (1993): 83-103. <http://eudml.org/doc/77452>.

@article{Deheuvels1993,
author = {Deheuvels, Paul, Mason, David M., Shorack, Galen R.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {sample maximum; intermediate trimmed means; sample mean; domain of attraction of a stable law; extreme order statistics; normalizing constants; empirical process methodology},
language = {eng},
number = {1},
pages = {83-103},
publisher = {Gauthier-Villars},
title = {Some results on the influence of extremes on the bootstrap},
url = {http://eudml.org/doc/77452},
volume = {29},
year = {1993},
}

TY - JOUR
AU - Deheuvels, Paul
AU - Mason, David M.
AU - Shorack, Galen R.
TI - Some results on the influence of extremes on the bootstrap
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1993
PB - Gauthier-Villars
VL - 29
IS - 1
SP - 83
EP - 103
LA - eng
KW - sample maximum; intermediate trimmed means; sample mean; domain of attraction of a stable law; extreme order statistics; normalizing constants; empirical process methodology
UR - http://eudml.org/doc/77452
ER -

References

top
  1. [1] M.A. Arcones and E. Giné, The Bootstrap of the Mean with Arbitrary Bootrstrap Sample Size, Ann. Inst. Henri Poincaré, Vol. 25, 1989, pp. 457-481. Zbl0712.62015MR1045246
  2. [2] M.A. Arcones and E. Giné, Additions and Corrections to the Bootstrap of the Mean with Arbitrary Bootrstrap Sample Size, Ann. Inst. Henri Poincaré, Vol. 27, 1992, pp. 583-595. Zbl0747.62019MR1141249
  3. [3] K.B. Athreya, Bootstrap for the Mean in the Infinite Variance Case II, Technical Report 86-21, Dept. of Statistics, Iowa State University, 1985. 
  4. [4] K.B. Athreya, Bootstrap of the Mean in the Infinite Variance Case, Ann. Statist., Vol. 15, 1987, pp. 724-731. Zbl0628.62042MR888436
  5. [5] A. Balkema and L. de Haan, Limit Laws for Order Statistics, In: Colloq. Math. Soc. János Bolyai. Limit' Theorems of Probability, P. RÉVÉSZ Ed., North Holland, Amsterdam, Vol. 11, 1975, pp. 17-22. Zbl0313.62020MR405537
  6. [6] D.J. Bickel and D.A.: Freedman, Some Asymptotic Theory for the Bootstrap, Ann. Statist., Vol. 9, 1981, pp. 1196-1217. Zbl0449.62034MR630103
  7. [7] J. Brétagnolle, Lois Limites du Bootstrap de Certaines Fonctionnelles, Ann. Inst. Henri Poincaré, Vol. 19, 1983, pp. 281-296. Zbl0535.62046MR725561
  8. [8] M. Csörgö, S. Csörgö, L. Horváth and D.M. Mason, Normal and Stable Convergence of Integral Functions of the Empirical Distribution Function, Ann. Probab., Vol. 14, 1986, pp. 86-118. Zbl0589.60030MR815961
  9. [9] S. Csörgö, L. Horváth and D.M. Mason, What Portion of the Sample Partial Sum Asymptotically Stable or Normal? Probab. Theory Related Fields, Vol. 72, 1986, pp. 1-16. Zbl0572.60028MR835156
  10. [10] S. Csörgö, E. Haeusler and D.M. Mason, The Asymptotic Distribution of Trimmed Sums, Ann. Probab., Vol. 16, 1988 a, pp. 672-699. Zbl0647.62030MR929070
  11. [11] S. Csörgö, E. Haeusler and D.M. Mason, A Probabilistic Approach to the Asymptotic Distribution of Sums of Independent, Identically Distributed Random Variables, Adv. in Appl. Math., Vol. 9, 1988 b, pp. 259-333. Zbl0657.60029MR956558
  12. [12] P. Deheuvels and D.M. Mason, Bahadur-Kiefer-type Processes, Ann. Probab., Vol. 18, 1990, pp. 669-697. Zbl0712.60028MR1055427
  13. [13] J.H.J. Einmahl and D.M. Mason, Strong Limit Theorems for Weighted Quantile Processes, Ann. Probab., Vol. 16, 1988, pp. 1623-1633. Zbl0659.60052MR958207
  14. [14] P. Griffin and W.E. Pruitt, Asymptotic Normality and Subsequential Limits of Trimmed Sums, Ann. Probab., Vol. 17, 1989, pp. 1186-1219. Zbl0688.60016MR1009452
  15. [15] L. de Haan, On Regular Variation and Its Application to the Weak Convergence of Sample Extremes, Mathematical Centre Tracts, Amsterdam, 1971. Zbl0226.60039
  16. [16] P. Hall, Asymptotic Properties of the Bootstrap for Heavy Tailed Distributions, Ann. Statist., Vol. 18, 1990, pp. 1342-1360. Zbl0714.62035MR1062071
  17. [17] B.R. James, A Functional Law of the Iterated Logarithm for Empirical Distributions, Ann. Probab., Vol. 3, 1975, pp. 763-772. Zbl0347.60030MR402881
  18. [18] J. Kiefer, Deviations Between the Sample Quantile Process and the Sample D.F., In: Nonparametric Techniques in Statistical Inference, M. PURI, Ed., Press, London1970, pp. 299-319, Cambridge Univ. MR277071
  19. [19] K. Knight, On the Bootstrap of the Sample Mean in the Infinite Variance Case, Ann. Statist., Vol. 17, 1989, pp. 1168-1175. Zbl0687.62017MR1015144
  20. [20] D.M. Mason, The Asymptotic Distribution of Weighted Empirical Distributions, Stochastic Processes, Appl., Vol. 15, 1983, pp. 99-109. Zbl0504.62021MR694539
  21. [21] D.M. Mason and W.R. Van Zwet, A Refinement of the KMT Inequality for the Uniform Empirical Process, Ann. Probab., Vol. 15, 1987, pp. 871-884. Zbl0638.60040MR893903
  22. [22] N. O'Reilly, On the Weak Convergence of Empirical Processes in Sup-Norm Metrics, Ann. Probab., Vol. 2, 1974, pp. 642-651. Zbl0301.60007
  23. [23] G. Shorack and J.A. Wellner, Empirical Processes with Applications to Statistics, Wiley, New York, 1986. Zbl1170.62365MR838963
  24. [24] G. Shorack, Some Results for Linear Combinations, In: Sums, Trimmed Sums, and Extremes, M. G. HAHN, D. M. MASON and D. C. WEINER Eds., 1991 a, pp. 377-392, Progress in Probability, Birkhäuser, Boston, Vol. 23. Zbl0724.60020MR1117278
  25. [25] G. Shorack, Uniform. CLT, WLLN, LIL and a Data Analytic Approach to Trimmed L-Statistics, Dept. of Statistics Technical Report, University of Washington, 1991 b. 
  26. [26] J.W.H. Swanepoel, A Note in Proving that the (Modified) Bootstrap Works, Commun. Statist. Theory Meth., Vol. 15, (11), 1986, pp. 3193-3203. Zbl0623.62041MR860478

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.