An invariance principle for Markov processes and brownian particles with singular interaction
Annales de l'I.H.P. Probabilités et statistiques (1998)
- Volume: 34, Issue: 2, page 217-248
- ISSN: 0246-0203
Access Full Article
topHow to cite
topOsada, Hirofumi. "An invariance principle for Markov processes and brownian particles with singular interaction." Annales de l'I.H.P. Probabilités et statistiques 34.2 (1998): 217-248. <http://eudml.org/doc/77601>.
@article{Osada1998,
author = {Osada, Hirofumi},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {invariance principle; Markov processes; Dirichlet forms; interacting Brownian motion},
language = {eng},
number = {2},
pages = {217-248},
publisher = {Gauthier-Villars},
title = {An invariance principle for Markov processes and brownian particles with singular interaction},
url = {http://eudml.org/doc/77601},
volume = {34},
year = {1998},
}
TY - JOUR
AU - Osada, Hirofumi
TI - An invariance principle for Markov processes and brownian particles with singular interaction
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1998
PB - Gauthier-Villars
VL - 34
IS - 2
SP - 217
EP - 248
LA - eng
KW - invariance principle; Markov processes; Dirichlet forms; interacting Brownian motion
UR - http://eudml.org/doc/77601
ER -
References
top- [1] A. De Masi et al., An invariance principle for reversible Markov processes. Applications to random motions in random environments, Joul. Stat. Phys., Vol. 55, Nos. 3/41989, pp. 787-855. Zbl0713.60041MR1003538
- [2] D. Durr and M. Pulvirenti, On the vortex flow in bounded domains, Commun. Math. Phys., Vol. 85, 1982, pp. 265-273. Zbl0503.60069MR676001
- [3] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet forms and symmetric Markov processesWalter de Gruyter, 1994. Zbl0838.31001MR1303354
- [4] J. Fritz, Gradient dynamics of infinite point systems, Ann. Prob., Vol. 15, 1987, pp. 478-514. Zbl0623.60119MR885128
- [5] J. Goodman , Convergence of the random vortex method, Commun. Pure Appl. Math., Vol. 40, 1987, pp. 189-220. Zbl0635.35077MR872384
- [6] M.Z. Guo, Limit theorems for interacting particle systems. Thesis, Dept. of Mathematics, New York University, 1984.
- [7] J.H. Kim, Stochastic calculus related to non-symmetric Dirichlet forms, Osaka Jour. Math., Vol. 24, 1987, pp. 331-371. Zbl0625.60087MR909022
- [8] C. Kipnis and S.R.S. Varadhan, Central limit theorems for additive functional of reversible Markov process and applications to simple exclusions, Commun. Math. Phys., Vol. 104, 1986, pp. 1-19. Zbl0588.60058MR834478
- [9] R. Lang, Unendlich-dimensionale Wienerprocesse mit Wechselwirkung I, Z. Wahrschverw. Gebiete, Vol. 38, 1977, pp. 55-72. Zbl0349.60103MR431435
- [10] R. Lang, Unendlich-dimensionale Wienerprocesse mit Wechselwirkung II, Z. Wahrschverw. Gebiete, Vol. 39, 1978, pp. 277-299. Zbl0342.60067MR455161
- [11] C. Marchioro and M. Pulvirenti, Hydrodynamic in two dimensions and vortex theory, Commun. Math. Phys., Vol. 84, 1982, pp. 483-503. Zbl0527.76021MR667756
- [12] Z.M. Ma and M. Röckner, Introduction to the theory of (non-symmetric) Dirichlet forms, 1992, Springer. Zbl0826.31001
- [13] S. Olla, Homogenization of diffusion processes in random fields, Ecole Polytechnique, 1994.
- [14] H. Osada, Diffusion processes with generators of generalized divergence form, J. Math. Kyoto Univ., Vol. 27, 1987, pp. 597-619. Zbl0657.35073MR916761
- [15] H. Osada, A stochastic differential equation arising from the vortex problem, Proc. Japan Acad., Vol. 61, Ser. A, 1985. Zbl0602.60047MR834541
- [16] H. Osada, Propagation of chaos for the two dimensional Navier-Stokes equation, in Proc. of Taniguchi Symp. Probabilistic Methods in Mathematical Physics, eds Ito K. and Ikeda N., 1987, pp. 303-334 Zbl0645.76040MR933829
- [17] H. Osada, Homogenization of reflecting barrier Brownian motions, Proc. the Taniguchi Workshop at Sanda and Kyoto, 1990, Pitman Research notes in Math., Vol. 283, 1993, pp. 59-74. Zbl0788.60098MR1354151
- [18] H. Osada, Dirichlet form approach to infinite-dimensional Wiener processes with singular interactions, Commun. Math. Phys., Vol. 176, 1996, pp. 117-131. Zbl0837.60073MR1372820
- [19] H. Osada, Tagged particle processes and their non-explosion criteria, in preparation. Zbl1196.60166
- [20] H. Osada, Positivity of self-diffusion matrix of interacting Brownian particles with hard core, in preparation. Zbl0920.60056
- [21] H. Osada and T. Saitoh, An invariance principle for non-symmetric Markov processes and reflecting diffusions in random domains, Probab. Theory Relat. Fields, Vol. 101, 1995, pp. 45-63. Zbl0816.60079MR1314174
- [22] Y. Oshima, Lecture on Dirichlet Spaces, Univ. Erlangen-Nurnberg, 1988.
- [23] S.I. Resnick, Extreme Values, Regular Variation, and Point Processes, Springer1987 Zbl0633.60001MR900810
- [24] D. Ruelle, Superstable interactions in classical statistical mechanics, Commun. Math. Phys., Vol. 18, 1970, pp. 127-159. Zbl0198.31101MR266565
- [25] T. Shiga, A remark on infinite-dimensional Wiener processes with interactions, Z. Wahrschverw. Gebiete, Vol. 47, 1979, pp. 299-304 Zbl0407.60098MR525311
- [26] H. Spohn, Large scale dynamics of interacting particlesSpringer-Verlag, 1991. Zbl0742.76002
- [27] T. Tanemura, Homogenization of a reflecting barrier Brownian motion in a continuum percolation cluster in Rd, Kodai Math. J., Vol. 17, 1994, pp. 228-245. Zbl0808.60085MR1282212
- [28] T. Tanemura, A system of infinitely many mutually reflecting Brownian balls in Rd, Probab. Theory Relat. Fields, Vol. 104, 1996, pp. 399-426. Zbl0849.60087MR1376344
- [29] S.R.S. Varadhan, Self diffusion of a tagged particle in equilibrium for asymmetric mean zero random walk with simple exclusion, Ann. Inst. Henri Poincaré, Vol. 31, 1, 1995, pp. 273-285. Zbl0816.60093MR1340041
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.