An invariance principle for Markov processes and brownian particles with singular interaction

Hirofumi Osada

Annales de l'I.H.P. Probabilités et statistiques (1998)

  • Volume: 34, Issue: 2, page 217-248
  • ISSN: 0246-0203

How to cite

top

Osada, Hirofumi. "An invariance principle for Markov processes and brownian particles with singular interaction." Annales de l'I.H.P. Probabilités et statistiques 34.2 (1998): 217-248. <http://eudml.org/doc/77601>.

@article{Osada1998,
author = {Osada, Hirofumi},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {invariance principle; Markov processes; Dirichlet forms; interacting Brownian motion},
language = {eng},
number = {2},
pages = {217-248},
publisher = {Gauthier-Villars},
title = {An invariance principle for Markov processes and brownian particles with singular interaction},
url = {http://eudml.org/doc/77601},
volume = {34},
year = {1998},
}

TY - JOUR
AU - Osada, Hirofumi
TI - An invariance principle for Markov processes and brownian particles with singular interaction
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1998
PB - Gauthier-Villars
VL - 34
IS - 2
SP - 217
EP - 248
LA - eng
KW - invariance principle; Markov processes; Dirichlet forms; interacting Brownian motion
UR - http://eudml.org/doc/77601
ER -

References

top
  1. [1] A. De Masi et al., An invariance principle for reversible Markov processes. Applications to random motions in random environments, Joul. Stat. Phys., Vol. 55, Nos. 3/41989, pp. 787-855. Zbl0713.60041MR1003538
  2. [2] D. Durr and M. Pulvirenti, On the vortex flow in bounded domains, Commun. Math. Phys., Vol. 85, 1982, pp. 265-273. Zbl0503.60069MR676001
  3. [3] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet forms and symmetric Markov processesWalter de Gruyter, 1994. Zbl0838.31001MR1303354
  4. [4] J. Fritz, Gradient dynamics of infinite point systems, Ann. Prob., Vol. 15, 1987, pp. 478-514. Zbl0623.60119MR885128
  5. [5] J. Goodman , Convergence of the random vortex method, Commun. Pure Appl. Math., Vol. 40, 1987, pp. 189-220. Zbl0635.35077MR872384
  6. [6] M.Z. Guo, Limit theorems for interacting particle systems. Thesis, Dept. of Mathematics, New York University, 1984. 
  7. [7] J.H. Kim, Stochastic calculus related to non-symmetric Dirichlet forms, Osaka Jour. Math., Vol. 24, 1987, pp. 331-371. Zbl0625.60087MR909022
  8. [8] C. Kipnis and S.R.S. Varadhan, Central limit theorems for additive functional of reversible Markov process and applications to simple exclusions, Commun. Math. Phys., Vol. 104, 1986, pp. 1-19. Zbl0588.60058MR834478
  9. [9] R. Lang, Unendlich-dimensionale Wienerprocesse mit Wechselwirkung I, Z. Wahrschverw. Gebiete, Vol. 38, 1977, pp. 55-72. Zbl0349.60103MR431435
  10. [10] R. Lang, Unendlich-dimensionale Wienerprocesse mit Wechselwirkung II, Z. Wahrschverw. Gebiete, Vol. 39, 1978, pp. 277-299. Zbl0342.60067MR455161
  11. [11] C. Marchioro and M. Pulvirenti, Hydrodynamic in two dimensions and vortex theory, Commun. Math. Phys., Vol. 84, 1982, pp. 483-503. Zbl0527.76021MR667756
  12. [12] Z.M. Ma and M. Röckner, Introduction to the theory of (non-symmetric) Dirichlet forms, 1992, Springer. Zbl0826.31001
  13. [13] S. Olla, Homogenization of diffusion processes in random fields, Ecole Polytechnique, 1994. 
  14. [14] H. Osada, Diffusion processes with generators of generalized divergence form, J. Math. Kyoto Univ., Vol. 27, 1987, pp. 597-619. Zbl0657.35073MR916761
  15. [15] H. Osada, A stochastic differential equation arising from the vortex problem, Proc. Japan Acad., Vol. 61, Ser. A, 1985. Zbl0602.60047MR834541
  16. [16] H. Osada, Propagation of chaos for the two dimensional Navier-Stokes equation, in Proc. of Taniguchi Symp. Probabilistic Methods in Mathematical Physics, eds Ito K. and Ikeda N., 1987, pp. 303-334 Zbl0645.76040MR933829
  17. [17] H. Osada, Homogenization of reflecting barrier Brownian motions, Proc. the Taniguchi Workshop at Sanda and Kyoto, 1990, Pitman Research notes in Math., Vol. 283, 1993, pp. 59-74. Zbl0788.60098MR1354151
  18. [18] H. Osada, Dirichlet form approach to infinite-dimensional Wiener processes with singular interactions, Commun. Math. Phys., Vol. 176, 1996, pp. 117-131. Zbl0837.60073MR1372820
  19. [19] H. Osada, Tagged particle processes and their non-explosion criteria, in preparation. Zbl1196.60166
  20. [20] H. Osada, Positivity of self-diffusion matrix of interacting Brownian particles with hard core, in preparation. Zbl0920.60056
  21. [21] H. Osada and T. Saitoh, An invariance principle for non-symmetric Markov processes and reflecting diffusions in random domains, Probab. Theory Relat. Fields, Vol. 101, 1995, pp. 45-63. Zbl0816.60079MR1314174
  22. [22] Y. Oshima, Lecture on Dirichlet Spaces, Univ. Erlangen-Nurnberg, 1988. 
  23. [23] S.I. Resnick, Extreme Values, Regular Variation, and Point Processes, Springer1987 Zbl0633.60001MR900810
  24. [24] D. Ruelle, Superstable interactions in classical statistical mechanics, Commun. Math. Phys., Vol. 18, 1970, pp. 127-159. Zbl0198.31101MR266565
  25. [25] T. Shiga, A remark on infinite-dimensional Wiener processes with interactions, Z. Wahrschverw. Gebiete, Vol. 47, 1979, pp. 299-304 Zbl0407.60098MR525311
  26. [26] H. Spohn, Large scale dynamics of interacting particlesSpringer-Verlag, 1991. Zbl0742.76002
  27. [27] T. Tanemura, Homogenization of a reflecting barrier Brownian motion in a continuum percolation cluster in Rd, Kodai Math. J., Vol. 17, 1994, pp. 228-245. Zbl0808.60085MR1282212
  28. [28] T. Tanemura, A system of infinitely many mutually reflecting Brownian balls in Rd, Probab. Theory Relat. Fields, Vol. 104, 1996, pp. 399-426. Zbl0849.60087MR1376344
  29. [29] S.R.S. Varadhan, Self diffusion of a tagged particle in equilibrium for asymmetric mean zero random walk with simple exclusion, Ann. Inst. Henri Poincaré, Vol. 31, 1, 1995, pp. 273-285. Zbl0816.60093MR1340041

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.