Construction of markovian coalescents

Steven N. Evans; Jim Pitman

Annales de l'I.H.P. Probabilités et statistiques (1998)

  • Volume: 34, Issue: 3, page 339-383
  • ISSN: 0246-0203

How to cite

top

Evans, Steven N., and Pitman, Jim. "Construction of markovian coalescents." Annales de l'I.H.P. Probabilités et statistiques 34.3 (1998): 339-383. <http://eudml.org/doc/77606>.

@article{Evans1998,
author = {Evans, Steven N., Pitman, Jim},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Feller process; additive coalescent; random graph process; stable subordinator},
language = {eng},
number = {3},
pages = {339-383},
publisher = {Gauthier-Villars},
title = {Construction of markovian coalescents},
url = {http://eudml.org/doc/77606},
volume = {34},
year = {1998},
}

TY - JOUR
AU - Evans, Steven N.
AU - Pitman, Jim
TI - Construction of markovian coalescents
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1998
PB - Gauthier-Villars
VL - 34
IS - 3
SP - 339
EP - 383
LA - eng
KW - Feller process; additive coalescent; random graph process; stable subordinator
UR - http://eudml.org/doc/77606
ER -

References

top
  1. [1] D. Aldous. Brownian excursions, critical random graphs and the multiplicative coalescent. Ann. Probab., Vol. 25, 1997, pp. 812-854. Zbl0877.60010MR1434128
  2. [2] D. Aldous and J. Pitman. Brownian bridge asymptotics for random mappings. Random Structures and Algorithms, Vol. 5, 1994, pp. 487-512. Zbl0811.60057MR1293075
  3. [3] D. Aldous and J. Pitman. The entrance boundary of the additive coalescent. Paper in preparation, 1997. 
  4. [4] D.J. Aldous. Exchangeability and related topics. In P.L. Hennequin, editor, École d'Été de Probabilités de Saint-FlourXII, Springer Lecture Notes in Mathematics, Vol. 1117. Springer-Verlag, 1985. Zbl0562.60042MR883646
  5. [5] D.J. Aldous. The continuum random tree III. Ann. Probab., Vol. 21, 1993, pp. 248-289. Zbl0791.60009MR1207226
  6. [6] D.J. Aldous. Deterministic and stochastic models for coalescence: a review of the mean-field theory for probabilists. To appear in Bernoulli. Available via homepage http://www.stat.berkeley.edu/users/aldous, 1997. Zbl0930.60096MR1673235
  7. [7] D.J. Aldous and V. Limic. The entrance boundary of the multiplicative coalescent. Unpublished. Available via homepage http://www.stat.berkeley.edu/users/aldous, 1997. 
  8. [8] D.J. Aldous and J. Pitman. The standard additive coalescent. Technical Report 489, Dept. Statistics, U.C. Berkeley, 1997. Available via http://www.stat.berkeley.edu/users/pitman. Zbl0936.60064
  9. [9] A. Benveniste and J. Jacod. Systèmes de Levy des processus deMarkov. Invent. Math., Vol. 21, 1973, pp. 183-198. Zbl0265.60074MR343375
  10. [10] R.M. Blumenthal and R.K. Getoor. Markov Processes and Potential Theory. Academic Press, New York, 1968. Zbl0169.49204MR264757
  11. [11] E. Bolthausen and A.-S. Sznitman. On Ruelle's probability cascades and an abstract cavity method. To appear in Comm. Math. Phys., 1998. Zbl0927.60071MR1652734
  12. [12] A. Broder. Generating random spanning trees. In Proc. 30'th IEEESymp. Found. Comp. Sci., 1989, pp. 442-447. 
  13. [13] A. Cayley. A theorem on trees. Quarterly Journal of Pure and Applied Mathematics, 23:376-378, 1889. (Also in The Collected Mathematical Papers of Arthur CAYLEY. Vol. XIII, pp. 26-28, Cambridge University Press, 1897). Zbl21.0687.01JFM21.0687.01
  14. [14] D.A. Dawson. Measure-valued Markov processes. In École d'Été de Probabilités de Saint-Flour, 1991, Springer Lecture Notes in Mathematics, Vol. 1117, 1994. Zbl0799.60080MR1242575
  15. [15] P. Donnelly and P. Joyce. Continuity and weak convergence of ranked and size-biased permutations on the infinite simplex. Stochastic Processes and their Applications, Vol. 31, 1989, pp. 89-103. Zbl0694.60009MR996613
  16. [16] P. Donnelly and S. Simons. On the stochastic approach to cluster size distribution during particle coagulation I: Asymptotic expansion in the deterministic limit. J. Phys. A: Math. Gen., Vol. 26, 1993, pp. 2755-2767. Zbl0788.60127MR1236145
  17. [17] S.N. Ethier and T.G. Kurtz. Fleming-Viot processes in population genetics. SIAM Journal on Control and Optimization, Vol. 31, 1993, pp. 345-386. Zbl0774.60045MR1205982
  18. [18] S.N. Evans. Infinitely-many-species Lotka-Volterra equations arising from systems of coalescing masses. Technical Report 478, Dept. Statistics, U.C. Berkeley, 1997. To appear in J. London Math. Soc.. Available via http://www.stat.berkeley.edu/tech-reports. Zbl0940.35051MR1721823
  19. [19] S.N. Evans and J. Pitman. Stationary Markov processes related to stable Ornstein-Uhlenbeck processes and the additive coalescent. Technical Report 488, Dept. Statistics, U.C. Berkeley, 1997. Available via http://www.stat.berkeley.edu/users/pitman. Zbl0934.60046MR1649003
  20. [20] E.M. Hendriks, J.L. Spouge, M. Eibl, and M. Shreckenberg. Exact solutions for random coagulation processes.Z. Phys. B - Condensed Matter, Vol. 58, 1985, pp. 219-227. 
  21. [21] N. Ikeda and S. Watanabe. Stochastic Differential Equations andDiffusion Processes. North Holland/Kodansha, 1989. 2nd edition. Zbl0684.60040MR1011252
  22. [22] J.F.C. Kingman. Random discrete distributions.J. Roy. Statist. Soc. B, Vol. 37, 1975, pp. 1-22 Zbl0331.62019MR368264
  23. [23] J.F.C. Kingman. The representation of partition structures.J. London Math. Soc., Vol. 18, 1978, pp. 374-380. Zbl0415.92009MR509954
  24. [24] J.F.C. Kingman. The coalescent. Stochastic Processes and their Applications, Vol. 13, 1982, pp. 235-248. Zbl0491.60076MR671034
  25. [25] J.F.C. Kingman. On the genealogy of large populations. In J. Gani and E.J. Hannan, editors, Essays in Statistical Science, volume 19A of J.A.P. Special vol., pp. 27-43. Applied Probability Trust, 1982. Zbl0516.92011MR633178
  26. [26] C. Lacey and S. Cole. Merger rates in hierarchical models of galaxy formation. Mon. Not. R. Astron. Soc., Vol. 262, 1993, pp. 627-649. 
  27. [27] A.A. Lushnikov. Coagulation in finite systems.J. Colloid and Interface Science, Vol. 65, 1978, 276-285. 
  28. [28] R. Lyons and Y. Peres. Probability on trees and networks. Book in preparation, available at http://www.ma.huji.ac.il/lyons/prbtree.html, 1996. 
  29. [29] A.H. Marcus. Stochastic coalescence. Technometrics, Vol. 10, 1968, pp. 133-143. MR223151
  30. [30] M. Perman. Order statistics for jumps of normalized subordinators. Stoch. Proc. Appl., Vol. 46, 1993, pp. 267-281. Zbl0777.60070MR1226412
  31. [31] M. Perman, J. Pitman, and M. Yor. Size-biased sampling of Poisson point processes and excursions. Probab. Th. Rel. Fields, Vol. 92, 1992, pp. 21-39. Zbl0741.60037MR1156448
  32. [32] J. Pitman. Exchangeable and partially exchangeable random partitions. Probab. Th. Rel. Fields, Vol. 102, 1995, pp. 145-158. Zbl0821.60047MR1337249
  33. [33] J. Pitman. Coalescent random forests. Technical Report 457, Dept. Statistics, U.C. Berkeley, 1996. Available via http://www.stat.berkeley.edu/users/pitman. Zbl0918.05042
  34. [34] J. Pitman. Random discrete distributions invariant under size-biased permutation. Adv. Appl. Prob., Vol. 28, 1996, pp. 525-539. Zbl0853.62018MR1387889
  35. [35] J. Pitman. Abel-Cayley-Hurwitz multinomial expansions associated with random mappings, forests and subsets. Technical Report 498, Dept. Statistics, U.C. Berkeley, 1997. Available via http://www.stat.berkeley.edu/users/pitman. Zbl0990.05071
  36. [36] J. Pitman. Coalescents with multiple collisions. Technical Report 495, Dept. Statistics, U.C. Berkeley, 1997. Available via http://www.stat.berkeley.edu/users/pitman. Zbl0963.60079
  37. [37] J. Pitman and M. Yor. The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. Ann. Probab., Vol. 25, 1997, pp. 855-900. Zbl0880.60076MR1434129
  38. [38] A. Rényi. On the enumeration of trees. In R. Guy, H. Hanani, N. Sauer, and J. Schonheim, editors, Combinatorial Structures and their Applications, pages 355-360. Gordon and Breach, New York, 1970. Zbl0247.05102MR263708
  39. [39] R.K. Sheth. Merging and hierarchical clustering from an initially Poisson distribution. Mon. Not. R. Astron. Soc., Vol. 276, 1995, pp. 796-824. 
  40. [40] R.K. Sheth and J. Pitman. Coagulation and branching process models of gravitational clustering. Mon. Not. R. Astron. Soc., Vol. 289, 1997, pp. 66-80. 
  41. [41] R. Stanley. Enumerative combinatorics, vol. 2. Book in preparation, to be published byCambridge University Press, 1996. MR1676282
  42. [42] H. Tanaka and K. Nakazawa. Stochastic coagulation equation and validity of the statistical coagulation equation.J. Geomag. Geoelectr., Vol. 45, 1993, pp. 361-381. 
  43. [43] H. Tanaka and K. Nakazawa. Validity of the stochastic coagulation equation and runaway growth of protoplanets. Icarus, Vol. 107, 1994, pp. 404-412. 
  44. [44] H.M. Taylor and S. Karlin.An Introduction to Stochastic Modeling (revised ed.). Academic Press, Boston, 1994. Zbl0796.60001MR1242559
  45. [45] P.G.J. van Dongen. Fluctuations in coagulating systems II. J. Statist. Phys., Vol. 49, 1987, pp. 927-975. MR935481
  46. [46] P.G.J. van Dongen and M.H. Ernst. Fluctuations in coagulating systems. J. Statist. Phys., Vol. 49, 1987, pp. 879-926. MR935480
  47. [47] M. von Smoluchowski. Drei Vorträge über Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen. Physik. Z., Vol. 17, 1916, pp. 557-585. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.