On the equivalence of some eternal additive coalescents
Annales de l'I.H.P. Probabilités et statistiques (2008)
- Volume: 44, Issue: 6, page 1020-1037
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topBasdevant, Anne-Laure. "On the equivalence of some eternal additive coalescents." Annales de l'I.H.P. Probabilités et statistiques 44.6 (2008): 1020-1037. <http://eudml.org/doc/78001>.
@article{Basdevant2008,
abstract = {In this paper, we study additive coalescents. Using their representation as fragmentation processes, we prove that the law of a large class of eternal additive coalescents is absolutely continuous with respect to the law of the standard additive coalescent on any bounded time interval.},
author = {Basdevant, Anne-Laure},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {additive coalescent; fragmentation process},
language = {eng},
number = {6},
pages = {1020-1037},
publisher = {Gauthier-Villars},
title = {On the equivalence of some eternal additive coalescents},
url = {http://eudml.org/doc/78001},
volume = {44},
year = {2008},
}
TY - JOUR
AU - Basdevant, Anne-Laure
TI - On the equivalence of some eternal additive coalescents
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 6
SP - 1020
EP - 1037
AB - In this paper, we study additive coalescents. Using their representation as fragmentation processes, we prove that the law of a large class of eternal additive coalescents is absolutely continuous with respect to the law of the standard additive coalescent on any bounded time interval.
LA - eng
KW - additive coalescent; fragmentation process
UR - http://eudml.org/doc/78001
ER -
References
top- [1] D. Aldous and J. Pitman. The standard additive coalescent. Ann. Probab. 26 (1998) 1703–1726. Zbl0936.60064MR1675063
- [2] D. Aldous and J. Pitman. Inhomogeneous continuum random trees and the entrance boundary of the additive coalescent. Probab. Theory Related Fields 118 (2000) 455–482. Zbl0969.60015MR1808372
- [3] J. Berestycki. Ranked fragmentations. ESAIM Probab. Statist. 6 (2002) 157–175 (electronic). Available at http://www.edpsciences.org/10.1051/ps:2002009. Zbl1001.60078MR1943145
- [4] J. Bertoin. Lévy Processes. Cambridge Univ. Press, 1996. Zbl0861.60003MR1406564
- [5] J. Bertoin. Eternal additive coalescents and certain bridges with exchangeable increments. Ann. Probab. 29 (2001) 344–360. Zbl1019.60072MR1825153
- [6] J. Bertoin. Self-similar fragmentations. Ann. Inst. H. Poincaré Probab. Statist. 38 (2002) 319–340. Zbl1002.60072MR1899456
- [7] J. Bertoin. On small masses in self-similar fragmentations. Stochastic Process. Appl. 109 (2004) 13–22. Zbl1075.60092MR2024841
- [8] J. Bertoin. Random Fragmentation and Coagulation Processes. Cambridge Stud. Adv. Math. 102. Cambridge University Press (2006). Zbl1107.60002MR2253162
- [9] J. Bertoin and A. Rouault. Note sur les fragmentations. Private communication.
- [10] J. D. Biggins. Martingale convergence in the branching random walk. J. Appl. Probab. 14 (1977) 25–37. Zbl0356.60053MR433619
- [11] B. Chauvin and A. Rouault. KPP equation and supercritical branching Brownian motion in the subcritical speed area. Application to spatial trees. Probab. Theory Related Fields 80 (1988) 299–314. Zbl0653.60077MR968823
- [12] S. N. Evans and J. Pitman. Construction of Markovian coalescents. Ann. Inst. H. Poincaré Probab. Statist. 34 (1998) 339–383. Zbl0906.60058MR1625867
- [13] J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes. Springer, Berlin, 1987. Zbl0635.60021MR959133
- [14] A. E. Kyprianou. Travelling wave solutions to the K–P–P equation: alternatives to Simon Harris’ probabilistic analysis. Ann. Inst. H. Poincaré Probab. Statist. 40 (2004) 53–72. Zbl1042.60057MR2037473
- [15] G. Miermont. Ordered additive coalescent and fragmentations associated to Levy processes with no positive jumps. Electron. J. Probab. 6 (2001) no. 14, 33 pp. (electronic). Available at http://www.math.washington.edu/~ejpecp/EjpVol6/paper14.abs.html. Zbl0974.60054MR1844511
- [16] J. Neveu. Multiplicative martingales for spatial branching processes. In Seminar on Stochastic Processes, 1987 (Princeton, NJ, 1987) 223–242. Progr. Probab. Statist. 15. Birkhäuser, Boston, MA, 1988. Zbl0652.60089MR1046418
- [17] M. Perman, J. Pitman and M. Yor. Size-biased sampling of Poisson point processes and excursions. Probab. Theory Related Fields 92 (1992) 21–39. Zbl0741.60037MR1156448
- [18] K.-I. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge Univ. Press, 1999. Zbl0973.60001MR1739520
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.