On the equivalence of some eternal additive coalescents

Anne-Laure Basdevant

Annales de l'I.H.P. Probabilités et statistiques (2008)

  • Volume: 44, Issue: 6, page 1020-1037
  • ISSN: 0246-0203

Abstract

top
In this paper, we study additive coalescents. Using their representation as fragmentation processes, we prove that the law of a large class of eternal additive coalescents is absolutely continuous with respect to the law of the standard additive coalescent on any bounded time interval.

How to cite

top

Basdevant, Anne-Laure. "On the equivalence of some eternal additive coalescents." Annales de l'I.H.P. Probabilités et statistiques 44.6 (2008): 1020-1037. <http://eudml.org/doc/78001>.

@article{Basdevant2008,
abstract = {In this paper, we study additive coalescents. Using their representation as fragmentation processes, we prove that the law of a large class of eternal additive coalescents is absolutely continuous with respect to the law of the standard additive coalescent on any bounded time interval.},
author = {Basdevant, Anne-Laure},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {additive coalescent; fragmentation process},
language = {eng},
number = {6},
pages = {1020-1037},
publisher = {Gauthier-Villars},
title = {On the equivalence of some eternal additive coalescents},
url = {http://eudml.org/doc/78001},
volume = {44},
year = {2008},
}

TY - JOUR
AU - Basdevant, Anne-Laure
TI - On the equivalence of some eternal additive coalescents
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 6
SP - 1020
EP - 1037
AB - In this paper, we study additive coalescents. Using their representation as fragmentation processes, we prove that the law of a large class of eternal additive coalescents is absolutely continuous with respect to the law of the standard additive coalescent on any bounded time interval.
LA - eng
KW - additive coalescent; fragmentation process
UR - http://eudml.org/doc/78001
ER -

References

top
  1. [1] D. Aldous and J. Pitman. The standard additive coalescent. Ann. Probab. 26 (1998) 1703–1726. Zbl0936.60064MR1675063
  2. [2] D. Aldous and J. Pitman. Inhomogeneous continuum random trees and the entrance boundary of the additive coalescent. Probab. Theory Related Fields 118 (2000) 455–482. Zbl0969.60015MR1808372
  3. [3] J. Berestycki. Ranked fragmentations. ESAIM Probab. Statist. 6 (2002) 157–175 (electronic). Available at http://www.edpsciences.org/10.1051/ps:2002009. Zbl1001.60078MR1943145
  4. [4] J. Bertoin. Lévy Processes. Cambridge Univ. Press, 1996. Zbl0861.60003MR1406564
  5. [5] J. Bertoin. Eternal additive coalescents and certain bridges with exchangeable increments. Ann. Probab. 29 (2001) 344–360. Zbl1019.60072MR1825153
  6. [6] J. Bertoin. Self-similar fragmentations. Ann. Inst. H. Poincaré Probab. Statist. 38 (2002) 319–340. Zbl1002.60072MR1899456
  7. [7] J. Bertoin. On small masses in self-similar fragmentations. Stochastic Process. Appl. 109 (2004) 13–22. Zbl1075.60092MR2024841
  8. [8] J. Bertoin. Random Fragmentation and Coagulation Processes. Cambridge Stud. Adv. Math. 102. Cambridge University Press (2006). Zbl1107.60002MR2253162
  9. [9] J. Bertoin and A. Rouault. Note sur les fragmentations. Private communication. 
  10. [10] J. D. Biggins. Martingale convergence in the branching random walk. J. Appl. Probab. 14 (1977) 25–37. Zbl0356.60053MR433619
  11. [11] B. Chauvin and A. Rouault. KPP equation and supercritical branching Brownian motion in the subcritical speed area. Application to spatial trees. Probab. Theory Related Fields 80 (1988) 299–314. Zbl0653.60077MR968823
  12. [12] S. N. Evans and J. Pitman. Construction of Markovian coalescents. Ann. Inst. H. Poincaré Probab. Statist. 34 (1998) 339–383. Zbl0906.60058MR1625867
  13. [13] J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes. Springer, Berlin, 1987. Zbl0635.60021MR959133
  14. [14] A. E. Kyprianou. Travelling wave solutions to the K–P–P equation: alternatives to Simon Harris’ probabilistic analysis. Ann. Inst. H. Poincaré Probab. Statist. 40 (2004) 53–72. Zbl1042.60057MR2037473
  15. [15] G. Miermont. Ordered additive coalescent and fragmentations associated to Levy processes with no positive jumps. Electron. J. Probab. 6 (2001) no. 14, 33 pp. (electronic). Available at http://www.math.washington.edu/~ejpecp/EjpVol6/paper14.abs.html. Zbl0974.60054MR1844511
  16. [16] J. Neveu. Multiplicative martingales for spatial branching processes. In Seminar on Stochastic Processes, 1987 (Princeton, NJ, 1987) 223–242. Progr. Probab. Statist. 15. Birkhäuser, Boston, MA, 1988. Zbl0652.60089MR1046418
  17. [17] M. Perman, J. Pitman and M. Yor. Size-biased sampling of Poisson point processes and excursions. Probab. Theory Related Fields 92 (1992) 21–39. Zbl0741.60037MR1156448
  18. [18] K.-I. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge Univ. Press, 1999. Zbl0973.60001MR1739520

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.