Ergodic theorems for surfaces with minimal random weights

Daniel Boivin

Annales de l'I.H.P. Probabilités et statistiques (1998)

  • Volume: 34, Issue: 5, page 567-599
  • ISSN: 0246-0203

How to cite

top

Boivin, Daniel. "Ergodic theorems for surfaces with minimal random weights." Annales de l'I.H.P. Probabilités et statistiques 34.5 (1998): 567-599. <http://eudml.org/doc/77614>.

@article{Boivin1998,
author = {Boivin, Daniel},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {first-passage percolation; moment condition},
language = {eng},
number = {5},
pages = {567-599},
publisher = {Gauthier-Villars},
title = {Ergodic theorems for surfaces with minimal random weights},
url = {http://eudml.org/doc/77614},
volume = {34},
year = {1998},
}

TY - JOUR
AU - Boivin, Daniel
TI - Ergodic theorems for surfaces with minimal random weights
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1998
PB - Gauthier-Villars
VL - 34
IS - 5
SP - 567
EP - 599
LA - eng
KW - first-passage percolation; moment condition
UR - http://eudml.org/doc/77614
ER -

References

top
  1. [1] M.A. Akcoglu and U. Krengel, Ergodic theorems for superadditive processes, J. Reine Angew. Math., Vol. 323, 1981, pp. 53-67. Zbl0453.60039MR611442
  2. [2] M. Aizenman, J.T. Chayes, L. Chayes, J. Frölich and L. Russo, On a sharp transition from area law to perimeter law in a system of random surfaces, Comm. Math. Phys., Vol. 92, 1983, pp. 19-69. Zbl0529.60099MR728447
  3. [3] N. Bleistein and R.A. Handelsman, Asymptotic Expansions of Integrals, Dover Publications, 1975. Zbl0327.41027MR863284
  4. [4] D. Boivin, Weak convergence for reversible random walks in a random environment, Ann. Probab., Vol. 21, 1993, pp. 1427-1440. Zbl0783.60067MR1235423
  5. [5] D. Boivin, First-passage percolation: the stationary case, Probab. Th. Rel. Fields, Vol. 86, 1990, pp. 491-499. Zbl0685.60103MR1074741
  6. [6] A. Calderon, Ergodic theory and translation invariant operators, Proc. Nat. Acad. Sci. USA, Vol. 59, 1968, pp. 349-353. Zbl0185.21806MR227354
  7. [7] J.T. Cox and R. Durrett, Some limit theorems for percolation processes with necessary and sufficient conditions, Ann. Probab., Vol. 9, 1981, pp. 583-603. Zbl0462.60012MR624685
  8. [8] A. Del Junco and J. Rosenblatt, Counterexamples in Ergodic Theory and Number Theory, Math. Ann., Vol. 245, 1979, pp. 185-197. Zbl0398.28021MR553340
  9. [9] J. Depauw, Thèse de doctorat, Université de Bretagne Occidentale, 1994. 
  10. [10] R. Durrett, Lecture Notes on Particule Systems and Percolation, Wads-worth & Brooks/Cole, 1988. Zbl0659.60129
  11. [11] K. Golden and G. Papanicolaou, Bounds for effective parameters of heterogeneous media by analytic continuation, Comm. Math. Phys., Vol. 90, 1983, pp. 473-491. MR719428
  12. [12] G. Grimmett and H. Kesten, First-passage percolation, network flows and electrical resistances, Z. Wahrsch. verw. Gebiete, Vol. 66, 1984, pp. 335-366. Zbl0525.60098MR751574
  13. [13] O. Haggstrom and R. Meester, Asymptotic shapes for stationary first passage percolation, Ann. Probab., Vol. 23, 1995, pp. 1511-1522. Zbl0852.60104MR1379157
  14. [14] Y. Kamae, A simple proof of the ergodic theorem using non-standard analysis, Israel J. Math., Vol. 42, 1982, pp. 284-290. Zbl0499.28011MR682311
  15. [15] M. Keane, Ergodic theory and subshifts of finite type. In Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, Oxford University Press, 1991. Zbl0755.58033MR1130172
  16. [16] H. Kesten, Surfaces with minimal random weights and maximal flows: A higher dimensional version of first-passage percolation, Illinois J. Math., Vol. 31, 1987, pp. 99-166. Zbl0591.60096MR869483
  17. [17] H. Kesten, Percolation theory and first-passage percolation, Ann. Probab., Vol. 15, 1987, pp. 1231-1271. Zbl0629.60103MR905330
  18. [18] H. Kesten, Aspects of first-passage percolation, Lecture Notes in Math., Vol. 1180, Springer, New York, 1986, pp. 125-264. Zbl0602.60098MR876084
  19. [19] S.M. Kozlov, The method of averaging and walks in inhomogeneous environments, Russian Math. Surveys, Vol. 40, 1985, pp. 73-145. Zbl0615.60063
  20. [20] U. Krengel, Ergodic Theorems, de Gruyter Studies in Mathematics6, de Gruyter, Berlin, 1985. Zbl0575.28009MR797411
  21. [21] W. Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. of the AMS, Vol. 69, 1963, pp. 766-770. Zbl0143.34701MR155146
  22. [22] D. Richardson, Random growth in a tesselation, Proc. Cambridge Philos. Soc., Vol. 74, 1973, pp. 515-528. Zbl0295.62094MR329079
  23. [23] J.L. Rubio De Francia, Maximal functions and Fourier transforms, Duke Math. J., Vol. 53, 1986, pp. 395-404. Zbl0612.42008MR850542
  24. [24] S.L. Sobolev, Applications of Functional Analysis in Mathematical Physics. Translations of Mathematical Monographs, American Mathematical Society, Vol. 7, 1963. Zbl0123.09003MR165337
  25. [25] E.M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bulletin of the AMS, Vol. 84, 1978, pp. 1239-1295. Zbl0393.42010MR508453
  26. [26] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton University Press, 1993. Zbl0821.42001MR1232192
  27. [27] N. Wiener, The ergodic theorem, Duke Math. J., Vol. 5, 1939, pp. 1-18. Zbl0021.23501JFM65.0516.04

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.