From repeated games to brownian games

Bernard De Meyer

Annales de l'I.H.P. Probabilités et statistiques (1999)

  • Volume: 35, Issue: 1, page 1-48
  • ISSN: 0246-0203

How to cite

top

De Meyer, Bernard. "From repeated games to brownian games." Annales de l'I.H.P. Probabilités et statistiques 35.1 (1999): 1-48. <http://eudml.org/doc/77622>.

@article{DeMeyer1999,
author = {De Meyer, Bernard},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {convergence rate; Brownian motion},
language = {eng},
number = {1},
pages = {1-48},
publisher = {Gauthier-Villars},
title = {From repeated games to brownian games},
url = {http://eudml.org/doc/77622},
volume = {35},
year = {1999},
}

TY - JOUR
AU - De Meyer, Bernard
TI - From repeated games to brownian games
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1999
PB - Gauthier-Villars
VL - 35
IS - 1
SP - 1
EP - 48
LA - eng
KW - convergence rate; Brownian motion
UR - http://eudml.org/doc/77622
ER -

References

top
  1. [1] R.J. Aumann and M. Maschler, Repeated Games with Incomplete Information, MIT Press, 1995. Zbl0972.91501MR1342074
  2. [2] P. Brémaud and M. Yor, Changes of Filtrations and of Probability Measures, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 45, 1978, pp. 269-295. Zbl0415.60048MR511775
  3. [3] B. De Meyer, Vitesse de Convergence des Jeux Répétés à Information Incomplète, Thèse Doctorale, Faculté des Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, 1993. 
  4. [4] B. De Meyer, A Bound for Continuous Martingales in a Cone, Core Discussion Paper 9515, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, 1995. 
  5. [5] B. De Meyer, Repeated Games and Partial Differential Equations, Mathematics of Operations Research, 21, 1996, pp. 209-236. Zbl0846.90142MR1385875
  6. [6] B. De Meyer, Repeated Games, Duality and the Central Limit Theorem, Mathematics of Operations Research, 21, 1996, pp. 237-251. Zbl0846.90143MR1385876
  7. [7] B. De Meyer, Brownian Games: Uniqueness and Regularity Issues, Cahier du Laboratoire d'Econométrie de l'école Polytechnique, 1997, p. 459. 
  8. [8] J.L. Doob, Stochastic Processes, John Wiley & Sons, New York, 1953. Zbl0053.26802
  9. [9] N. Dunford and J.T. Schwarz, Linear Operators, Part I: General Theory, John Wiley & Sons, New York, 1957. 
  10. [10] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
  11. [11] N. Kazamaki, Continuous Exponential Martingales and BMO, Lecture Notes in Mathematics 1579, Springer-Verlag, Berlin, 1994. Zbl0806.60033MR1299529
  12. [12] J.F. Mertens, S. Sorin and S. Zamir, Repeated Games, Core Discussion Paper 9420, 9421, 9422, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, 1994. 
  13. [13] J.F. Mertens and S. Zamir, The Normal Distribution and Repeated Games, International Journal of Game Theory, 5, 1976, pp. 187-197. Zbl0362.90138MR472089
  14. [14] J.F. Mertens and S. Zamir, Incomplete Information Games and the Normal Distribution, Core Discussion Paper 9520, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, 1995. 
  15. [15] B. Revuz D. and M. Yor, Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin, 1994. Zbl0804.60001MR1303781
  16. [16] R.T. Rockafellar, Measurable Dependence of Convex Sets and Functions on Parameters, J. Math. Anal. Appl., 28, 1969, pp. 4-25. Zbl0202.33804MR247019
  17. [17] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970. Zbl0193.18401MR274683
  18. [18] M. Sion, On General Minimax Theorems, Pacific Journal of Mathematics, 8, 1958, pp. 171-176. Zbl0163.38203MR97026
  19. [19] S. Zamir, On the Relation between Finitely and Infinitely Repeated Games with Incomplete Information, International Journal of Game Theory, 1, 1971-1972, pp. 179-198. Zbl0249.90077MR337416

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.