Three-dimensional reflected driftless random walks in troughs : new asymptotic behavior

Sanjar Aspandiiarov; Roudolf Iasnogorodski

Annales de l'I.H.P. Probabilités et statistiques (1999)

  • Volume: 35, Issue: 1, page 49-83
  • ISSN: 0246-0203

How to cite

top

Aspandiiarov, Sanjar, and Iasnogorodski, Roudolf. "Three-dimensional reflected driftless random walks in troughs : new asymptotic behavior." Annales de l'I.H.P. Probabilités et statistiques 35.1 (1999): 49-83. <http://eudml.org/doc/77623>.

@article{Aspandiiarov1999,
author = {Aspandiiarov, Sanjar, Iasnogorodski, Roudolf},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {reflected random walks; diffusion processes; semimartingale reflected Brownian motion; recurrence classification},
language = {eng},
number = {1},
pages = {49-83},
publisher = {Gauthier-Villars},
title = {Three-dimensional reflected driftless random walks in troughs : new asymptotic behavior},
url = {http://eudml.org/doc/77623},
volume = {35},
year = {1999},
}

TY - JOUR
AU - Aspandiiarov, Sanjar
AU - Iasnogorodski, Roudolf
TI - Three-dimensional reflected driftless random walks in troughs : new asymptotic behavior
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1999
PB - Gauthier-Villars
VL - 35
IS - 1
SP - 49
EP - 83
LA - eng
KW - reflected random walks; diffusion processes; semimartingale reflected Brownian motion; recurrence classification
UR - http://eudml.org/doc/77623
ER -

References

top
  1. [1] S. Aspandiiarov, On the convergence of 2-dimensional Markov chains in quadrants with boundary reflection, Stoch. and Stochastic Reports., Vol. 53, 1995, pp. 275-303. Zbl0854.60030MR1381681
  2. [2] S. Aspandiiarov, R. Iasnogorodski and M. Menshikov, Passage-time moments for non-negative stochastic processes and an application to reflected random walks in a quadrant. Ann. Prob., Vol. 26, 1996, pp. 932-960. Zbl0869.60036MR1404537
  3. [3] S. Aspandiiarov, R. Iasnogorodski and M. Menshikov, Reflected random walks in a three-dimensional orthant (in preparation). Zbl0869.60036
  4. [4] S. Aspandiiarov and R. Iasnogorodski, Tails of passage-times for non-negative stochastic processes and an application to stochastic processes with boundary reflection in a wedge. Stoch. Proc. Appl., Vol. 66, 1997 pp. 115-145. Zbl0889.60045MR1431874
  5. [5] S. Aspandiiarov and Iasnogorodski, General criteria of integrability of functions of passage-times for non-negative stochastic processes and their applications. Theory of Prob. and its Appl. (to appear). Zbl0953.60062
  6. [6] S. Aspandiiarov and Iasnogorodski, Asymptotic behavior of stationary distributions for countable Markov chains with some applications. Bernoulli (to appear). Zbl0948.60068MR1693596
  7. [7] Kai Lai Chung, Markov Chains with Stationary Transition Probabilities. Springer, Berlin, 1967. Zbl0146.38401MR116388
  8. [8] J. Dai and R.J. Williams, Existence and uniqueness of semimartingale reflecting Brownian motions in convex polyhedrons. Theory of Prob. and its Appl., Vol. 40, 1996, pp. 1-25. Zbl0854.60078
  9. [9] R.D. De Blassie, Explicit semimartingale representation of Brownian motion in a wedge. Stoch. Proc. Appl., Vol. 34, 1990 pp. 67-97. Zbl0694.60076MR1039563
  10. [10] S.N. Ethier, T.G. Kurtz, Markov Processes. Wiley, Chichester, 1986. Zbl0592.60049MR838085
  11. [11] J.M. Harrison, R.J. Williams, Brownian models of open queuing networks with homogeneous customer populations. Stochastics and Stoch. Reports., Vol. 22, 1987, pp. 77-115. Zbl0632.60095MR912049
  12. [12] G. Fayolle, V. Malyshev and M. Menshikov, Random walks in a quarter plane with zero drifts. Ann. Inst. H. Poincare., Vol. 28, 1992, pp. 179-195. Zbl0747.60064MR1162572
  13. [13] W. Feller, An Introduction to Probability Theory and its Applications. Wiley, 2nd edn, New York, 1971. Zbl0219.60003MR270403
  14. [14] J. Jacod and A.N. Shiryaev, Limit Theorems for Stochastic Processes. Springer, Berlin, 1987. Zbl0635.60021MR959133
  15. [15] N.C. Jain, K. Jogdeo and W.F. Stout, Upper and lower functions for martingales and mixing processes. Ann. Prob., Vol. 3, 1975, pp. 119-145. Zbl0301.60026MR368130
  16. [16] R.Sh. Liptzer, A.N. Shiryaev, Theory of Martingales. Kluwer, Dordrecht, 1989. 
  17. [17] M. Menshikov and R.J. Williams, Passage-time moments for continuous non-negative stochastic processes and applications. Adv. Appl. Prob. (to appear). Zbl0857.60042
  18. [18] J. Neveu, Discrete-Parameter Martingales. North-Holland, Amsterdam, 1975. Zbl0345.60026MR402915
  19. [19] W.P. Petersen, Diffusion approximations for networks of queues with multiple customer types. Math. Oper. Res., Vol. 9, 1991, pp. 90-118. 
  20. [20] V. Petrov, Sums of Independent Random Variables. Springer-Verlag, 1975. Zbl0322.60042MR388499
  21. [21] W. Pruitt, The growth of random walks and Lévy processes. Ann. Prob., Vol. 9, 1981, pp. 948-956. Zbl0477.60033MR632968
  22. [22] M.I. Reiman, Open queuing networks in heavy traffic. Math. Oper. Res., Vol. 9, 1984, pp. 441-458. Zbl0549.90043MR757317
  23. [23] D. Revuz, Markov Chains. North-Holland, Amsterdam, 1975. Zbl0332.60045MR415773
  24. [24] L.M. Taylor and R.J. Williams, Existence and uniqueness of SRBM in an orthant. Prob. Theory and Rel. Fields., Vol. 96, 1993, pp. 283-318. Zbl0794.60079
  25. [25] S.R.S. Varadhan, R.J. Williams, Brownian motion in a wedge with oblique reflection. Comm. Pure and Applied Math., Vol. 38, 1985, pp. 405-443. Zbl0579.60082MR792398
  26. [26] R.J. Williams, On the approximation of queuing networks in heavy traffic. Stochastic Networks: Theory and Applications, eds. F. P. Kelly, S. Zachary and I. Ziedins, Clarendon Press, Oxford, 1996, pp. 35-56. Zbl0855.60083
  27. [27] R.J. Williams, Semimartingale reflecting Brownian motion in the orthant. The IMA Volumes in Mathematics and its Applications., Vol. 71, Springer, Berlin, 1995. Zbl0827.60031MR1381009
  28. [28] R.J. Williams, Reflected Brownian motion in a wedge: semimartingale property. Z. Wahr. verw. Geb., Vol. 69, 1985 pp; 161-176. Zbl0535.60042MR779455

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.