Geodesics and crossing brownian motion in a soft poissonian potential

Mario V. Wüthrich

Annales de l'I.H.P. Probabilités et statistiques (1999)

  • Volume: 35, Issue: 4, page 509-529
  • ISSN: 0246-0203

How to cite

top

Wüthrich, Mario V.. "Geodesics and crossing brownian motion in a soft poissonian potential." Annales de l'I.H.P. Probabilités et statistiques 35.4 (1999): 509-529. <http://eudml.org/doc/77638>.

@article{Wüthrich1999,
author = {Wüthrich, Mario V.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Brownian motion; soft Poissonian potential; geodesics; shape theorem; first passage percolation; Lyapunov coefficients},
language = {eng},
number = {4},
pages = {509-529},
publisher = {Gauthier-Villars},
title = {Geodesics and crossing brownian motion in a soft poissonian potential},
url = {http://eudml.org/doc/77638},
volume = {35},
year = {1999},
}

TY - JOUR
AU - Wüthrich, Mario V.
TI - Geodesics and crossing brownian motion in a soft poissonian potential
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1999
PB - Gauthier-Villars
VL - 35
IS - 4
SP - 509
EP - 529
LA - eng
KW - Brownian motion; soft Poissonian potential; geodesics; shape theorem; first passage percolation; Lyapunov coefficients
UR - http://eudml.org/doc/77638
ER -

References

top
  1. [1] S. Agmon, Lectures on Exponential Decay of Solutions of Second-order Elliptic Equations: Bounds on Eigenfunctions of N-Body Schrödinger Operators, Mathematical Notes29, Princeton University Press, Princeton, 1982. Zbl0503.35001MR745286
  2. [2] R. Carmona and B. Simon, Pointwise bounds on eigenfunctions and wave packets in N-body quantum systems, Commun. Math. Phys.80 (1981) 59-98. Zbl0464.35085MR623152
  3. [3] M.I. Freidlin and A.D. Wentzell, Random Perturbations of Dynamical Systems, Springer, New York, 1984. Zbl0522.60055MR722136
  4. [4] M. Giaquinta and S. Hildebrandt, Calculus of Variations I and II, Springer, Berlin, Heidelberg, 1996. Zbl0853.49001MR1368401
  5. [5] J.M. Hammersley and D.J.A. Welsh, First passage percolation, subadditive processes, stochastic networks, and generalized renewal theory, in: Bernoulli, Bayes, Laplace, Anniversairy Volume, Springer, 1965, pp. 61-110. Zbl0143.40402MR198576
  6. [6] H. Kesten, Aspects of first-passage percolation, in: P.L. Hennequin, ed., Ecole d'été de Probabilités de St. Flour XIV-1984, Lecture Notes in Math., Vol. 1180, Springer, 1985, pp. 125-264. Zbl0602.60098MR876084
  7. [7] T.M. Liggett, Interacting Particle Systems, Springer, New York, 1985. Zbl0559.60078MR776231
  8. [8] R. Meester and R. Roy, Continuum Percolation, University Press, Cambridge, 1996. Zbl0858.60092MR1409145
  9. [9] A. Sarkar, Co-existence of the occupied and vacant phase in boolean models in three and more dimensions, Adv. Appl. Prob.29 (1997) 878-889. Zbl0903.60086MR1484772
  10. [10] A.S. Sznitman, Shape theorem, Lyapounov exponents and large deviations for Brownian motion in a Poissonian potential, Commun. Pure Appl. Math.47 (12) (1994) 1655-1688. Zbl0814.60022MR1303223
  11. [11] A.S. Sznitman, Brownian Motion, Obstacles and Random Media, Springer Monographs in Mathematics, Berlin, Heidelberg, 1998. Zbl0973.60003MR1717054
  12. [12] M.P.W. Zerner, Directional decay of Green's function for a nonnegative potential on Zd, Ann. Appl. Prob.8 (1) (1998) 246-280. Zbl0938.60098MR1620370

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.