Brownian motion in a Poisson obstacle field
Séminaire Bourbaki (1998-1999)
- Volume: 41, page 91-111
- ISSN: 0303-1179
Access Full Article
topHow to cite
topKomorowski, Tomasz. "Brownian motion in a Poisson obstacle field." Séminaire Bourbaki 41 (1998-1999): 91-111. <http://eudml.org/doc/110270>.
@article{Komorowski1998-1999,
author = {Komorowski, Tomasz},
journal = {Séminaire Bourbaki},
keywords = {moderate Brownian motion in random environment; large deviation theory; Wiener sausage; method of enlargement of obstacles (MEO); random walk in a random environment (RWRE)},
language = {eng},
pages = {91-111},
publisher = {Société Mathématique de France},
title = {Brownian motion in a Poisson obstacle field},
url = {http://eudml.org/doc/110270},
volume = {41},
year = {1998-1999},
}
TY - JOUR
AU - Komorowski, Tomasz
TI - Brownian motion in a Poisson obstacle field
JO - Séminaire Bourbaki
PY - 1998-1999
PB - Société Mathématique de France
VL - 41
SP - 91
EP - 111
LA - eng
KW - moderate Brownian motion in random environment; large deviation theory; Wiener sausage; method of enlargement of obstacles (MEO); random walk in a random environment (RWRE)
UR - http://eudml.org/doc/110270
ER -
References
top- [1] Bingham, N.H., Goldie, C.M., Teugels, J.L. - Regular variations, vol. 27, Encyclopedia of Mathemathics and its applications, Cambridge Univ. Press (1987). Zbl0617.26001MR898871
- [2] Carmona, R., LaCroix, J.I. - Spectral theory of random Schrödinger operator, Probability and Application, Birkhäuser, Basel (1991). Zbl0717.60074MR1102675
- [3] Chavel, I. - Eigenvalues in Riemannian Geometry, Academic Press, New York (1984). Zbl0551.53001MR768584
- [4] Donsker, M., Varadhan, S.R.S. - Asymptotic for the Wiener sausage, Comm. Pure Appl. Math.28 (1975), 525-565. Zbl0333.60077MR397901
- [5] Erdösz, L. - Lifshitz tail in a magnetic field: the non-classical regime. Preprint (1998). MR1660914
- [6] Grassberger, P., Procaccia, I. - The long time properties of diffusion in a medium with static traps, J. Chem. Phys.77 (1982), 6281-6285.
- [7] Hammersley, J.M., Welsh, D.J.A. - First passage percolation, subadditive processes, stochastic networks and generalised renewal theory. In Bernoulli, Bayes, Laplace Anniversary volume, L.M. Le Cam and J. Neyman editors, Springer, New York (1965). Zbl0143.40402MR198576
- [8] Kac, M., Luttinger, J.M. - Bose Einstein condensation in the presence of impurities I, II, J. Math. Phys.14 (1973), 1626; 15 (1974), 183-186. MR342114
- [9] Kesten, H. - Aspects of first passage percolation, vol 1180, SpringerLecture Notes in Math., New York (1986). Zbl0602.60098MR876084
- [10] Krengel, U. - Ergodic Theorems, de Gruyter, Berlin-New York (1985). Zbl0575.28009MR797411
- [11] Krug, J., Spohn, H. - Kinetic roughening of growing surfaces. In Solids far from equilibrium, C. Godréche, Ed. Cambridge Univ. Press (1991), 479-582.
- [12] Lifshitz, I.M. - Energy spectrum structure and quantum states of disordered condensed systems, Sov. Phys. Uspekhi7 (1965), 549-573. MR181368
- [13] Liggett, T. - Interacting particle systems, Springer, New York (1985). Zbl1103.82016MR776231
- [14] Pastur, L., Figotin, A. - Spectra of random and almost periodic operators, New York, Springer (1992). Zbl0752.47002MR1223779
- [15] Povel, T. - Confinement of Brownian Motion among poissonian obstacles in Rd, d > 3 (1998), to appear in Prob. Theory and Rel. Fields. Zbl0943.60082
- [16] Povel, T. - Private communication (1998a). Zbl1015.91507
- [17] Schmock, U. - Convergence of the normalized one dimensional Wiener sausage path measure to a mixture of Brownian taboo processes, Stochastics29 (1990), 171-183. Zbl0697.60032MR1041034
- [18] Smoluchowski, M.V. - Versuch einer mathemathischen Theorie der koagulationskinetischen Lösungen, Z. Phys.Chemie92 (1918), 129-168.
- [19] Spitzer, F. - Principles of Random Walk, van Nostrand, Princeton (1964). Zbl0119.34304MR171290
- [20] Sznitman, A.S. - Lifshitz tail and Wiener sausage, I, II, J. Funct. Anal.94 (1990), 223-246, 247-272. Zbl0732.60089MR1081644
- [21] Sznitman, A.S. - On the confinement property of Brownian Motion among Poisson obstacles, Comm. Pure Appl. Math.44 (1991), 1137-1170. Zbl0753.60075MR1127055
- [22] Sznitman, A.S. - Shape theorem, Lyapunov exponents and large deviation for Brownian motion in a poissonian potential, Comm. Pure Appl. Math.47 (1994),1655-1688. Zbl0814.60022MR1303223
- [23] Sznitman, A.S. - Quenched critical large deviations for Brownian motion in a poissonian potential, Journ. Funct. Anal.131 (1995), 54-77 Zbl0853.60027MR1343159
- [24] Sznitman, A.S. - Annealed Lyapunov exponents and large deviations in a poissonian potential I,II, Ann. Scient. Éc. Norm. Sup.28 (1995a,b), 345-370, 371-390. Zbl0826.60019MR1326672
- [25] Sznitman, A.S. - Distance fluctuations and Lyapunov exponents, Ann. of Prob.24 (1996), 1507-1530 Zbl0871.60088MR1411504
- [26] Sznitman, A.S. - Brownian Motion, Obstacles and Random Media, Springer Monographs in Mathemathics, Springer-VerlagBerlin, Heidelberg, New York (1998). Zbl0973.60003MR1717054
- [27] Wüthrich, M. - Scaling identity for crossing Brownian Motion in a poissonian potential (1998), to appear in Prob. Theory and Rel. Fields. Zbl0938.60099MR1660910
- [28] Wüthrich, M. - Geodesics and crossing Brownian motion in a soft poissonian potential (1998a), to appear in Ann. Inst. H. Poincaré. Zbl0943.60080MR1702240
- [29] Zerner, M. -Lyapunov exponents and quenched large deviation for multidimensional random walk in a random environment (1997), to appear in Ann. of Prob. Zbl0937.60095MR1675027
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.