Brownian motion in a Poisson obstacle field

Tomasz Komorowski

Séminaire Bourbaki (1998-1999)

  • Volume: 41, page 91-111
  • ISSN: 0303-1179

How to cite


Komorowski, Tomasz. "Brownian motion in a Poisson obstacle field." Séminaire Bourbaki 41 (1998-1999): 91-111. <>.

author = {Komorowski, Tomasz},
journal = {Séminaire Bourbaki},
keywords = {moderate Brownian motion in random environment; large deviation theory; Wiener sausage; method of enlargement of obstacles (MEO); random walk in a random environment (RWRE)},
language = {eng},
pages = {91-111},
publisher = {Société Mathématique de France},
title = {Brownian motion in a Poisson obstacle field},
url = {},
volume = {41},
year = {1998-1999},

AU - Komorowski, Tomasz
TI - Brownian motion in a Poisson obstacle field
JO - Séminaire Bourbaki
PY - 1998-1999
PB - Société Mathématique de France
VL - 41
SP - 91
EP - 111
LA - eng
KW - moderate Brownian motion in random environment; large deviation theory; Wiener sausage; method of enlargement of obstacles (MEO); random walk in a random environment (RWRE)
UR -
ER -


  1. [1] Bingham, N.H., Goldie, C.M., Teugels, J.L. - Regular variations, vol. 27, Encyclopedia of Mathemathics and its applications, Cambridge Univ. Press (1987). Zbl0617.26001MR898871
  2. [2] Carmona, R., LaCroix, J.I. - Spectral theory of random Schrödinger operator, Probability and Application, Birkhäuser, Basel (1991). Zbl0717.60074MR1102675
  3. [3] Chavel, I. - Eigenvalues in Riemannian Geometry, Academic Press, New York (1984). Zbl0551.53001MR768584
  4. [4] Donsker, M., Varadhan, S.R.S. - Asymptotic for the Wiener sausage, Comm. Pure Appl. Math.28 (1975), 525-565. Zbl0333.60077MR397901
  5. [5] Erdösz, L. - Lifshitz tail in a magnetic field: the non-classical regime. Preprint (1998). MR1660914
  6. [6] Grassberger, P., Procaccia, I. - The long time properties of diffusion in a medium with static traps, J. Chem. Phys.77 (1982), 6281-6285. 
  7. [7] Hammersley, J.M., Welsh, D.J.A. - First passage percolation, subadditive processes, stochastic networks and generalised renewal theory. In Bernoulli, Bayes, Laplace Anniversary volume, L.M. Le Cam and J. Neyman editors, Springer, New York (1965). Zbl0143.40402MR198576
  8. [8] Kac, M., Luttinger, J.M. - Bose Einstein condensation in the presence of impurities I, II, J. Math. Phys.14 (1973), 1626; 15 (1974), 183-186. MR342114
  9. [9] Kesten, H. - Aspects of first passage percolation, vol 1180, SpringerLecture Notes in Math., New York (1986). Zbl0602.60098MR876084
  10. [10] Krengel, U. - Ergodic Theorems, de Gruyter, Berlin-New York (1985). Zbl0575.28009MR797411
  11. [11] Krug, J., Spohn, H. - Kinetic roughening of growing surfaces. In Solids far from equilibrium, C. Godréche, Ed. Cambridge Univ. Press (1991), 479-582. 
  12. [12] Lifshitz, I.M. - Energy spectrum structure and quantum states of disordered condensed systems, Sov. Phys. Uspekhi7 (1965), 549-573. MR181368
  13. [13] Liggett, T. - Interacting particle systems, Springer, New York (1985). Zbl1103.82016MR776231
  14. [14] Pastur, L., Figotin, A. - Spectra of random and almost periodic operators, New York, Springer (1992). Zbl0752.47002MR1223779
  15. [15] Povel, T. - Confinement of Brownian Motion among poissonian obstacles in Rd, d &gt; 3 (1998), to appear in Prob. Theory and Rel. Fields. Zbl0943.60082
  16. [16] Povel, T. - Private communication (1998a). Zbl1015.91507
  17. [17] Schmock, U. - Convergence of the normalized one dimensional Wiener sausage path measure to a mixture of Brownian taboo processes, Stochastics29 (1990), 171-183. Zbl0697.60032MR1041034
  18. [18] Smoluchowski, M.V. - Versuch einer mathemathischen Theorie der koagulationskinetischen Lösungen, Z. Phys.Chemie92 (1918), 129-168. 
  19. [19] Spitzer, F. - Principles of Random Walk, van Nostrand, Princeton (1964). Zbl0119.34304MR171290
  20. [20] Sznitman, A.S. - Lifshitz tail and Wiener sausage, I, II, J. Funct. Anal.94 (1990), 223-246, 247-272. Zbl0732.60089MR1081644
  21. [21] Sznitman, A.S. - On the confinement property of Brownian Motion among Poisson obstacles, Comm. Pure Appl. Math.44 (1991), 1137-1170. Zbl0753.60075MR1127055
  22. [22] Sznitman, A.S. - Shape theorem, Lyapunov exponents and large deviation for Brownian motion in a poissonian potential, Comm. Pure Appl. Math.47 (1994),1655-1688. Zbl0814.60022MR1303223
  23. [23] Sznitman, A.S. - Quenched critical large deviations for Brownian motion in a poissonian potential, Journ. Funct. Anal.131 (1995), 54-77 Zbl0853.60027MR1343159
  24. [24] Sznitman, A.S. - Annealed Lyapunov exponents and large deviations in a poissonian potential I,II, Ann. Scient. Éc. Norm. Sup.28 (1995a,b), 345-370, 371-390. Zbl0826.60019MR1326672
  25. [25] Sznitman, A.S. - Distance fluctuations and Lyapunov exponents, Ann. of Prob.24 (1996), 1507-1530 Zbl0871.60088MR1411504
  26. [26] Sznitman, A.S. - Brownian Motion, Obstacles and Random Media, Springer Monographs in Mathemathics, Springer-VerlagBerlin, Heidelberg, New York (1998). Zbl0973.60003MR1717054
  27. [27] Wüthrich, M. - Scaling identity for crossing Brownian Motion in a poissonian potential (1998), to appear in Prob. Theory and Rel. Fields. Zbl0938.60099MR1660910
  28. [28] Wüthrich, M. - Geodesics and crossing Brownian motion in a soft poissonian potential (1998a), to appear in Ann. Inst. H. Poincaré. Zbl0943.60080MR1702240
  29. [29] Zerner, M. -Lyapunov exponents and quenched large deviation for multidimensional random walk in a random environment (1997), to appear in Ann. of Prob. Zbl0937.60095MR1675027

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.