Free boundary problem from stochastic lattice gas model
Annales de l'I.H.P. Probabilités et statistiques (1999)
- Volume: 35, Issue: 5, page 573-603
- ISSN: 0246-0203
Access Full Article
topHow to cite
topFunaki, T.. "Free boundary problem from stochastic lattice gas model." Annales de l'I.H.P. Probabilités et statistiques 35.5 (1999): 573-603. <http://eudml.org/doc/77640>.
@article{Funaki1999,
author = {Funaki, T.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {-dimensional periodic lattices; interacting random walks; Stefan free boundary problem; hydrodynamic scaling limit},
language = {eng},
number = {5},
pages = {573-603},
publisher = {Gauthier-Villars},
title = {Free boundary problem from stochastic lattice gas model},
url = {http://eudml.org/doc/77640},
volume = {35},
year = {1999},
}
TY - JOUR
AU - Funaki, T.
TI - Free boundary problem from stochastic lattice gas model
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1999
PB - Gauthier-Villars
VL - 35
IS - 5
SP - 573
EP - 603
LA - eng
KW - -dimensional periodic lattices; interacting random walks; Stefan free boundary problem; hydrodynamic scaling limit
UR - http://eudml.org/doc/77640
ER -
References
top- [1] M. Bramson and J.L. Lebowitz, Asymptotic behavior of densities for two-particle annihilating random walks, J. Statis. Phys.62 (1991) 297-372. Zbl0739.60091MR1105266
- [2] G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rat. Mech. Anal.92 (1986) 205-245. Zbl0608.35080MR816623
- [3] L. Chayes and G. Swindle, Hydrodynamic limits for one-dimensional particle systems with moving boundaries, Ann. Probab.24 (1996) 559-598. Zbl0869.60085MR1404521
- [4] W.H. Fleming and M. Viot, Some measure-valued Markov processes in population genetics theory, Indiana Univ. Math. J.28 (1979) 817-943. Zbl0444.60064MR542340
- [5] A. Friedman, Variational Principles and Free-Boundary Problems, Wiley, New York, 1982. Zbl0564.49002MR679313
- [6] T. Funaki, K. Handa and K. Uchiyama, Hydrodynamic limit of one-dimensional exclusion processes with speed change, Ann. Probab.19 (1991) 245- 265. Zbl0725.60114MR1085335
- [7] T. Funaki, K. Uchiyama and H.T. Yau, Hydrodynamic limit for lattice gas reversible under Bernoulli measures, in: T. Funaki and W.A. Woyczynski (Eds.), Nonlinear Stochastic PDE's: Hydrodynamic Limit and Burgers' Turbulence, IMA, Vol. 77, Univ. Minnesota, Springer, 1995, pp. 1-40. Zbl0840.60091MR1395890
- [8] T. Funaki and H. Spohn, Motion by mean curvature from the Ginzburg-Landau ∇φ-interface model, Commun. Math. Phys.185 (1997) 1-36. Zbl0884.58098MR1463032
- [9] H.O. Georgii, Canonical Gibbs Measures, Lect. Notes in Math., Vol. 760, Springer, 1979. Zbl0409.60094MR551621
- [10] M.Z. Guo, G.C. Papanicolaou and S.R.S. Varadhan, Nonlinear diffusion limit for a system with nearest neighbor interactions, Commun. Math. Phys.118 (1988) 31-59. Zbl0652.60107MR954674
- [11] C. Landim, S. Olla and S. Volchan, Driven tracer particle in one dimensional symmetric simple exclusion, Commun. Math. Phys.192 (1998) 287-307. Zbl0911.60085MR1617558
- [12] F. Rezakhanlou, Hydrodynamic limit for attractive particle systems on Zd, Commun. Math. Phys.140 (1991) 417-448. Zbl0738.60098MR1130693
- [13] J.-F. Rodrigues, Variational methods in the Stefan problem, in: A. Visintin (Ed.), Phase Transitions and Hysteresis, Lect. Notes in Math., Vol. 1584, Springer, 1994, pp. 147-212. Zbl0819.35154MR1321833
- [14] L.I. Rubinstein, The Stefan Problem, Amer. Math. Soc. Transl. Monogr.27, Providence, 1971. Zbl0219.35043
- [15] A.A. Samarskii and E.S. Nikolaev, Numerical Methods for Grid Equations, Vol. I, Birkhäuser, 1989. Zbl0649.65054MR1004468
- [16] H. Spohn, Large Scale Dynamics of Interacting Particles, Springer, 1991. Zbl0742.76002
- [17] H. Spohn, Interface motion in models with stochastic dynamics, J. Statis. Phys.71 (1993) 1081-1132. Zbl0935.82546MR1226387
- [18] Y. Suzuki and K. Uchiyama, Hydrodynamic limit for a spin system on a multidimensional lattice, Probab. Theory Related Fields95 (1993) 47-74. Zbl0794.60099MR1207306
- [19] K. Uchiyama, Scaling limits of interacting diffusions with arbitrary initial distributions, Probab. Theory Related Fields99 (1994) 97-110. Zbl0801.60092MR1273743
- [20] S.R.S. Varadhan, Scaling limits for interacting diffusions, Commun. Math. Phys.135 (1991) 313-353. Zbl0725.60085MR1087387
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.