Free boundary problem from stochastic lattice gas model

T. Funaki

Annales de l'I.H.P. Probabilités et statistiques (1999)

  • Volume: 35, Issue: 5, page 573-603
  • ISSN: 0246-0203

How to cite

top

Funaki, T.. "Free boundary problem from stochastic lattice gas model." Annales de l'I.H.P. Probabilités et statistiques 35.5 (1999): 573-603. <http://eudml.org/doc/77640>.

@article{Funaki1999,
author = {Funaki, T.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {-dimensional periodic lattices; interacting random walks; Stefan free boundary problem; hydrodynamic scaling limit},
language = {eng},
number = {5},
pages = {573-603},
publisher = {Gauthier-Villars},
title = {Free boundary problem from stochastic lattice gas model},
url = {http://eudml.org/doc/77640},
volume = {35},
year = {1999},
}

TY - JOUR
AU - Funaki, T.
TI - Free boundary problem from stochastic lattice gas model
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1999
PB - Gauthier-Villars
VL - 35
IS - 5
SP - 573
EP - 603
LA - eng
KW - -dimensional periodic lattices; interacting random walks; Stefan free boundary problem; hydrodynamic scaling limit
UR - http://eudml.org/doc/77640
ER -

References

top
  1. [1] M. Bramson and J.L. Lebowitz, Asymptotic behavior of densities for two-particle annihilating random walks, J. Statis. Phys.62 (1991) 297-372. Zbl0739.60091MR1105266
  2. [2] G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rat. Mech. Anal.92 (1986) 205-245. Zbl0608.35080MR816623
  3. [3] L. Chayes and G. Swindle, Hydrodynamic limits for one-dimensional particle systems with moving boundaries, Ann. Probab.24 (1996) 559-598. Zbl0869.60085MR1404521
  4. [4] W.H. Fleming and M. Viot, Some measure-valued Markov processes in population genetics theory, Indiana Univ. Math. J.28 (1979) 817-943. Zbl0444.60064MR542340
  5. [5] A. Friedman, Variational Principles and Free-Boundary Problems, Wiley, New York, 1982. Zbl0564.49002MR679313
  6. [6] T. Funaki, K. Handa and K. Uchiyama, Hydrodynamic limit of one-dimensional exclusion processes with speed change, Ann. Probab.19 (1991) 245- 265. Zbl0725.60114MR1085335
  7. [7] T. Funaki, K. Uchiyama and H.T. Yau, Hydrodynamic limit for lattice gas reversible under Bernoulli measures, in: T. Funaki and W.A. Woyczynski (Eds.), Nonlinear Stochastic PDE's: Hydrodynamic Limit and Burgers' Turbulence, IMA, Vol. 77, Univ. Minnesota, Springer, 1995, pp. 1-40. Zbl0840.60091MR1395890
  8. [8] T. Funaki and H. Spohn, Motion by mean curvature from the Ginzburg-Landau ∇φ-interface model, Commun. Math. Phys.185 (1997) 1-36. Zbl0884.58098MR1463032
  9. [9] H.O. Georgii, Canonical Gibbs Measures, Lect. Notes in Math., Vol. 760, Springer, 1979. Zbl0409.60094MR551621
  10. [10] M.Z. Guo, G.C. Papanicolaou and S.R.S. Varadhan, Nonlinear diffusion limit for a system with nearest neighbor interactions, Commun. Math. Phys.118 (1988) 31-59. Zbl0652.60107MR954674
  11. [11] C. Landim, S. Olla and S. Volchan, Driven tracer particle in one dimensional symmetric simple exclusion, Commun. Math. Phys.192 (1998) 287-307. Zbl0911.60085MR1617558
  12. [12] F. Rezakhanlou, Hydrodynamic limit for attractive particle systems on Zd, Commun. Math. Phys.140 (1991) 417-448. Zbl0738.60098MR1130693
  13. [13] J.-F. Rodrigues, Variational methods in the Stefan problem, in: A. Visintin (Ed.), Phase Transitions and Hysteresis, Lect. Notes in Math., Vol. 1584, Springer, 1994, pp. 147-212. Zbl0819.35154MR1321833
  14. [14] L.I. Rubinstein, The Stefan Problem, Amer. Math. Soc. Transl. Monogr.27, Providence, 1971. Zbl0219.35043
  15. [15] A.A. Samarskii and E.S. Nikolaev, Numerical Methods for Grid Equations, Vol. I, Birkhäuser, 1989. Zbl0649.65054MR1004468
  16. [16] H. Spohn, Large Scale Dynamics of Interacting Particles, Springer, 1991. Zbl0742.76002
  17. [17] H. Spohn, Interface motion in models with stochastic dynamics, J. Statis. Phys.71 (1993) 1081-1132. Zbl0935.82546MR1226387
  18. [18] Y. Suzuki and K. Uchiyama, Hydrodynamic limit for a spin system on a multidimensional lattice, Probab. Theory Related Fields95 (1993) 47-74. Zbl0794.60099MR1207306
  19. [19] K. Uchiyama, Scaling limits of interacting diffusions with arbitrary initial distributions, Probab. Theory Related Fields99 (1994) 97-110. Zbl0801.60092MR1273743
  20. [20] S.R.S. Varadhan, Scaling limits for interacting diffusions, Commun. Math. Phys.135 (1991) 313-353. Zbl0725.60085MR1087387

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.