A central limit theorem for random walks in random labyrinths

Carol Bezuidenhout; Geoffrey Grimmett

Annales de l'I.H.P. Probabilités et statistiques (1999)

  • Volume: 35, Issue: 5, page 631-683
  • ISSN: 0246-0203

How to cite

top

Bezuidenhout, Carol, and Grimmett, Geoffrey. "A central limit theorem for random walks in random labyrinths." Annales de l'I.H.P. Probabilités et statistiques 35.5 (1999): 631-683. <http://eudml.org/doc/77642>.

@article{Bezuidenhout1999,
author = {Bezuidenhout, Carol, Grimmett, Geoffrey},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walk; random labyrinth; invariance principle},
language = {eng},
number = {5},
pages = {631-683},
publisher = {Gauthier-Villars},
title = {A central limit theorem for random walks in random labyrinths},
url = {http://eudml.org/doc/77642},
volume = {35},
year = {1999},
}

TY - JOUR
AU - Bezuidenhout, Carol
AU - Grimmett, Geoffrey
TI - A central limit theorem for random walks in random labyrinths
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1999
PB - Gauthier-Villars
VL - 35
IS - 5
SP - 631
EP - 683
LA - eng
KW - random walk; random labyrinth; invariance principle
UR - http://eudml.org/doc/77642
ER -

References

top
  1. [1] P. Antal and A. Pisztora, On the chemical distance for supercritical Bernoulli percolation, Ann. Probab.24 (1996) 1036-1048. Zbl0871.60089MR1404543
  2. [2] H. Van Beijeren, Transport properties of stochastic Lorentz models, Rev. Modern Phys.54 (1982) 195-234. MR641369
  3. [3] H. Van Beijeren and H. Spohn, Transport properties of the one dimensional stochastic Lorentz model. I. Velocity autocorrelation, J. Statist. Phys.31 (1982) 231-254. MR711477
  4. [4] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968. Zbl0172.21201MR233396
  5. [5] L.A. Bunimovich and S.E. Troubetzkoy, Recurrence properties of Lorentz lattice gas cellular automata, J. Statist. Phys.67 (1992) 289-302. Zbl0900.60103MR1159466
  6. [6] R.M. Burton and M. Keane, Density and uniqueness in percolation, Comm. Math. Phys.121 ( 1989) 501-505. Zbl0662.60113MR990777
  7. [7] E.G.D. Cohen, New types of diffusions in lattice gas cellular automata, in: M. Mareschal and B.L. Holian (Eds.), Microscopic Simulations of Complex Hydrodynamical Phenomena, Plenum Press, New York, 1991, pp. 137-152. 
  8. [8] E.G.D. Cohen and F. Wang, New results for diffusion in Lorentz lattice gas cellular automata, J. Statist. Phys.81 (1995) 445-466. Zbl1106.82349
  9. [9] E.G.D. Cohen and F. Wang, Novel phenomena in Lorentz lattice gases, Physica A219 (1995) 56-87. 
  10. [10] A. Demasi, P.A. Ferrari, S. Goldstein and W.D. Wick, Invariance principle for reversible Markov processes with application to diffusion in the percolation regime, in: R.T. Durrett (Ed.), Particle Systems, Random Media and Large Deviations, Contemporary Mathematics No. 41, Amer. Math. Soc., Providence, RI, 1985, pp. 71-85. Zbl0571.60044MR814703
  11. [11] A. Demasi, P.A. Ferrari, S. Goldstein and W.D. Wick, An invariance principle for reversible Markov processes. Applications to random motions in random environments, J. Statist. Phys.55 (1989) 787-855. Zbl0713.60041MR1003538
  12. [12] J.L. Doob, Stochastic Processes, Wiley, New York, 1953. Zbl0053.26802MR58896
  13. [13] P.G. Doyle and E.L. Snell, Random Walks and Electric Networks, Carus Mathematical Monograph No. 22, AMA, Washington, DC, 1984. Zbl0583.60065
  14. [14] P. Ehrenfest, Collected Scientific Papers, M.J. Klein (Ed.), North-Holland, Amsterdam, 1959. Zbl0089.18402
  15. [15] S.N. Ethier and T.G. Kurtz, Markov Processes, Characterization and Convergence, Wiley, New York, 1986. Zbl0592.60049MR838085
  16. [16] S. Goldstein, Antisymmetric functionals of reversible Markov processes, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques31 (1995) 177-190. Zbl0813.60023MR1340036
  17. [17] G.R. Grimmett, Percolation, Springer, Berlin, 1989. Zbl0691.60089
  18. [18] G.R. Grimmett, Percolation and disordered systems, in: P. Bernard (Ed.), Ecole d'Eté de Probabilités de Saint Flour XXVI-1996, Lecture Notes in Mathematics, Vol. 1665, Springer, Berlin, 1997, pp. 153-300. Zbl0884.60089MR1490045
  19. [19] G.R. Grimmett and H. Kesten, First-passage percolation, network flows and electrical networks, Z. Wahr. Ver. Geb.66 (1984) 335-366. Zbl0525.60098MR751574
  20. [20] G.R. Grimmett and J.M. Marstrand, The supercritical phase of percolation is well behaved, Proc. Royal Society (London), Ser. A430 (1990) 439-457. Zbl0711.60100MR1068308
  21. [21] G.R. Grimmett, M.V. Menshikov and S.E. Volkov, Random walks in random labyrinths, Markov Process Related Fields2 (1996) 69-86. Zbl0879.60108MR1418408
  22. [22] F. Den Hollander, J. Naudts and F. Redig, Invariance principle for the stochastic Lorentz lattice gas, J. Statist. Phys.66 (1992) 1583-1598. Zbl0925.82148MR1156416
  23. [23] H. Kesten, Percolation Theory for Mathematicians, Birkhäuser, Boston, 1982. Zbl0522.60097
  24. [24] C. Kipnis and S.R.S. Varadhan, Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusion, Comm. Math. Phys.104 (1986) 1-19. Zbl0588.60058MR834478
  25. [25] T.M. Liggett, R.H. Schonmann and A. Stacey, Domination by product measures, Ann. Probab.25 (1997) 71-95. Zbl0882.60046MR1428500
  26. [26] H.A. Lorentz, The motion of electrons in metallic bodies, I, II, and III, Koninklijke Akademie van Wetenschappen te Amsterdam, Section of Sciences7 (1905) 438-453, 585-593, 684-691. 
  27. [27] A. Pisztora, Surface order large deviations for Ising, Potts and percolation models, Probab. Theory Related Fields104 (1996) 427-466. Zbl0842.60022MR1384040
  28. [28] A. Quas, Infinite paths in a Lorentz lattice gas model, Probab. Theory Related Fields (1996), to appear. Zbl0932.60087MR1701521
  29. [29] B. Tóth, Persistent random walks in random environment, Probab. Theory Related Fields71 (1986) 615-625. Zbl0589.60099MR833271
  30. [30] F. Wang and E.G.D. Cohen, Diffusion in Lorentz lattice gas cellular automata: The honeycomb and quasi-lattices compared with the square and triangular lattices, J. Statist. Phys.81 (1995) 467-495. Zbl1106.82362
  31. [31] R.M. Ziff, X.P. Kong and E.G.D. Cohen, Lorentz lattice-gas and kinetic-walk model, Phys. Rev. A44 (1991) 2410-2428. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.