A central limit theorem for random walks in random labyrinths
Carol Bezuidenhout; Geoffrey Grimmett
Annales de l'I.H.P. Probabilités et statistiques (1999)
- Volume: 35, Issue: 5, page 631-683
- ISSN: 0246-0203
Access Full Article
topHow to cite
topBezuidenhout, Carol, and Grimmett, Geoffrey. "A central limit theorem for random walks in random labyrinths." Annales de l'I.H.P. Probabilités et statistiques 35.5 (1999): 631-683. <http://eudml.org/doc/77642>.
@article{Bezuidenhout1999,
author = {Bezuidenhout, Carol, Grimmett, Geoffrey},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walk; random labyrinth; invariance principle},
language = {eng},
number = {5},
pages = {631-683},
publisher = {Gauthier-Villars},
title = {A central limit theorem for random walks in random labyrinths},
url = {http://eudml.org/doc/77642},
volume = {35},
year = {1999},
}
TY - JOUR
AU - Bezuidenhout, Carol
AU - Grimmett, Geoffrey
TI - A central limit theorem for random walks in random labyrinths
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1999
PB - Gauthier-Villars
VL - 35
IS - 5
SP - 631
EP - 683
LA - eng
KW - random walk; random labyrinth; invariance principle
UR - http://eudml.org/doc/77642
ER -
References
top- [1] P. Antal and A. Pisztora, On the chemical distance for supercritical Bernoulli percolation, Ann. Probab.24 (1996) 1036-1048. Zbl0871.60089MR1404543
- [2] H. Van Beijeren, Transport properties of stochastic Lorentz models, Rev. Modern Phys.54 (1982) 195-234. MR641369
- [3] H. Van Beijeren and H. Spohn, Transport properties of the one dimensional stochastic Lorentz model. I. Velocity autocorrelation, J. Statist. Phys.31 (1982) 231-254. MR711477
- [4] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968. Zbl0172.21201MR233396
- [5] L.A. Bunimovich and S.E. Troubetzkoy, Recurrence properties of Lorentz lattice gas cellular automata, J. Statist. Phys.67 (1992) 289-302. Zbl0900.60103MR1159466
- [6] R.M. Burton and M. Keane, Density and uniqueness in percolation, Comm. Math. Phys.121 ( 1989) 501-505. Zbl0662.60113MR990777
- [7] E.G.D. Cohen, New types of diffusions in lattice gas cellular automata, in: M. Mareschal and B.L. Holian (Eds.), Microscopic Simulations of Complex Hydrodynamical Phenomena, Plenum Press, New York, 1991, pp. 137-152.
- [8] E.G.D. Cohen and F. Wang, New results for diffusion in Lorentz lattice gas cellular automata, J. Statist. Phys.81 (1995) 445-466. Zbl1106.82349
- [9] E.G.D. Cohen and F. Wang, Novel phenomena in Lorentz lattice gases, Physica A219 (1995) 56-87.
- [10] A. Demasi, P.A. Ferrari, S. Goldstein and W.D. Wick, Invariance principle for reversible Markov processes with application to diffusion in the percolation regime, in: R.T. Durrett (Ed.), Particle Systems, Random Media and Large Deviations, Contemporary Mathematics No. 41, Amer. Math. Soc., Providence, RI, 1985, pp. 71-85. Zbl0571.60044MR814703
- [11] A. Demasi, P.A. Ferrari, S. Goldstein and W.D. Wick, An invariance principle for reversible Markov processes. Applications to random motions in random environments, J. Statist. Phys.55 (1989) 787-855. Zbl0713.60041MR1003538
- [12] J.L. Doob, Stochastic Processes, Wiley, New York, 1953. Zbl0053.26802MR58896
- [13] P.G. Doyle and E.L. Snell, Random Walks and Electric Networks, Carus Mathematical Monograph No. 22, AMA, Washington, DC, 1984. Zbl0583.60065
- [14] P. Ehrenfest, Collected Scientific Papers, M.J. Klein (Ed.), North-Holland, Amsterdam, 1959. Zbl0089.18402
- [15] S.N. Ethier and T.G. Kurtz, Markov Processes, Characterization and Convergence, Wiley, New York, 1986. Zbl0592.60049MR838085
- [16] S. Goldstein, Antisymmetric functionals of reversible Markov processes, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques31 (1995) 177-190. Zbl0813.60023MR1340036
- [17] G.R. Grimmett, Percolation, Springer, Berlin, 1989. Zbl0691.60089
- [18] G.R. Grimmett, Percolation and disordered systems, in: P. Bernard (Ed.), Ecole d'Eté de Probabilités de Saint Flour XXVI-1996, Lecture Notes in Mathematics, Vol. 1665, Springer, Berlin, 1997, pp. 153-300. Zbl0884.60089MR1490045
- [19] G.R. Grimmett and H. Kesten, First-passage percolation, network flows and electrical networks, Z. Wahr. Ver. Geb.66 (1984) 335-366. Zbl0525.60098MR751574
- [20] G.R. Grimmett and J.M. Marstrand, The supercritical phase of percolation is well behaved, Proc. Royal Society (London), Ser. A430 (1990) 439-457. Zbl0711.60100MR1068308
- [21] G.R. Grimmett, M.V. Menshikov and S.E. Volkov, Random walks in random labyrinths, Markov Process Related Fields2 (1996) 69-86. Zbl0879.60108MR1418408
- [22] F. Den Hollander, J. Naudts and F. Redig, Invariance principle for the stochastic Lorentz lattice gas, J. Statist. Phys.66 (1992) 1583-1598. Zbl0925.82148MR1156416
- [23] H. Kesten, Percolation Theory for Mathematicians, Birkhäuser, Boston, 1982. Zbl0522.60097
- [24] C. Kipnis and S.R.S. Varadhan, Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusion, Comm. Math. Phys.104 (1986) 1-19. Zbl0588.60058MR834478
- [25] T.M. Liggett, R.H. Schonmann and A. Stacey, Domination by product measures, Ann. Probab.25 (1997) 71-95. Zbl0882.60046MR1428500
- [26] H.A. Lorentz, The motion of electrons in metallic bodies, I, II, and III, Koninklijke Akademie van Wetenschappen te Amsterdam, Section of Sciences7 (1905) 438-453, 585-593, 684-691.
- [27] A. Pisztora, Surface order large deviations for Ising, Potts and percolation models, Probab. Theory Related Fields104 (1996) 427-466. Zbl0842.60022MR1384040
- [28] A. Quas, Infinite paths in a Lorentz lattice gas model, Probab. Theory Related Fields (1996), to appear. Zbl0932.60087MR1701521
- [29] B. Tóth, Persistent random walks in random environment, Probab. Theory Related Fields71 (1986) 615-625. Zbl0589.60099MR833271
- [30] F. Wang and E.G.D. Cohen, Diffusion in Lorentz lattice gas cellular automata: The honeycomb and quasi-lattices compared with the square and triangular lattices, J. Statist. Phys.81 (1995) 467-495. Zbl1106.82362
- [31] R.M. Ziff, X.P. Kong and E.G.D. Cohen, Lorentz lattice-gas and kinetic-walk model, Phys. Rev. A44 (1991) 2410-2428.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.