Stochastic partial differential equations for a class of interacting measure-valued diffusions
D. A. Dawson; J. Vaillancourt; H. Wang
Annales de l'I.H.P. Probabilités et statistiques (2000)
- Volume: 36, Issue: 2, page 167-180
- ISSN: 0246-0203
Access Full Article
topHow to cite
topDawson, D. A., Vaillancourt, J., and Wang, H.. "Stochastic partial differential equations for a class of interacting measure-valued diffusions." Annales de l'I.H.P. Probabilités et statistiques 36.2 (2000): 167-180. <http://eudml.org/doc/77655>.
@article{Dawson2000,
author = {Dawson, D. A., Vaillancourt, J., Wang, H.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {stochastic partial differential equation; measure-valued processes; cylindrical Brownian motion},
language = {eng},
number = {2},
pages = {167-180},
publisher = {Gauthier-Villars},
title = {Stochastic partial differential equations for a class of interacting measure-valued diffusions},
url = {http://eudml.org/doc/77655},
volume = {36},
year = {2000},
}
TY - JOUR
AU - Dawson, D. A.
AU - Vaillancourt, J.
AU - Wang, H.
TI - Stochastic partial differential equations for a class of interacting measure-valued diffusions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2000
PB - Gauthier-Villars
VL - 36
IS - 2
SP - 167
EP - 180
LA - eng
KW - stochastic partial differential equation; measure-valued processes; cylindrical Brownian motion
UR - http://eudml.org/doc/77655
ER -
References
top- [1] Dawson D.A., Infinitely divisible random measures and superprocesses, in: Proc. 1990 Workshop on Stochastic Analysis and Related Topics, Silivri, Turkey, 1992. Zbl0785.60034MR1203373
- [2] Dawson D.A., Vaillancourt J., Stochastic McKean-Vlasov equations, Nonlinear Differential Eq. Appl.2 (1995) 199-229. Zbl0830.60091MR1328577
- [3] Dellacherie C., Meyer P.A., Probabilities and Potential B, North-Holland, Amsterdam, 1982. Zbl0494.60002MR745449
- [4] Dynkin E.B., Markov Processes, Springer, Berlin, 1965. Zbl0132.37901
- [5] Ethier S.N., Kurtz T.G., Markov Processes: Characterization and Convergence, Wiley, New York, 1986. Zbl0592.60049MR838085
- [6] Ikeda N., Nagasawa M., Watanabe S., Branching Markov processes, I, II, III, J. Math. Kyoto Univ.8 (1968) 233-278; 8 (1968) 365-410; 9 (1969) 95-160. Zbl0233.60068MR232439
- [7] Jakubowski A., On the Skorohod topology, Ann. Inst. Henri Poincaré22 (3) (1986) 263-285. Zbl0609.60005MR871083
- [8] Jakubowski A., Continuity of the Ito stochastic integral in Hilbert spaces, Stochastics59 ( 1996) 169-182. Zbl0868.60047MR1427737
- [9] Jakubowski A., The almost sure Skorohod representation for subsequences in nonmetric spaces, Theory Probab. Appl.42 (2) (1997) 167-174. Zbl0923.60001MR1453342
- [10] Konno N., Shiga T., Stochastic partial differential equations for some measure-valued diffusions, Probab. Theory Related Fields79 (1988) 201-225. Zbl0631.60058MR958288
- [11] Kotelenez P., Existence, uniqueness and smoothness for a class of function valued stochastic partial differential equations, Stochastics41 (1992) 177-199. Zbl0766.60078MR1275582
- [12] Kotelenez P., A stochastic Navier-Stokes equation for the vorticity of a two-dimensional fluid, Ann. Appl. Probab.5 (1995) 1126-1160. Zbl0851.60062MR1384369
- [13] Kotelenez P., A class of quasilinear stochastic partial differential equations of McKean-Vlasov type with mass conservation, Probab. Theory Related Fields102 (1995) 159-188. Zbl0821.60066MR1337250
- [14] Mitoma I., Tightness of probabilities on C([0, 1], S') and D([0, 1], S'), Ann. Probab.11 (1983) 989-999. Zbl0527.60004MR714961
- [15] Walsh J.B., An introduction to stochastic partial differential equations, in: Lecture Notes in Math., Vol. 1180, 1986, pp. 265-439. Zbl0608.60060MR876085
- [16] Wang H., State classification for a class of measure-valued branching diffusions in a Brownian medium, Probab. Theory Related Fields109 (1997) 39-55. Zbl0882.60092MR1469919
- [17] Wang H., A class of measure-valued branching diffusions in a random medium, Stochastic Anal. Appl.16 (4) (1998) 753-786. Zbl0913.60091MR1632574
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.