Some properties of superprocesses under a stochastic flow
Kijung Lee; Carl Mueller; Jie Xiong
Annales de l'I.H.P. Probabilités et statistiques (2009)
- Volume: 45, Issue: 2, page 477-490
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topLee, Kijung, Mueller, Carl, and Xiong, Jie. "Some properties of superprocesses under a stochastic flow." Annales de l'I.H.P. Probabilités et statistiques 45.2 (2009): 477-490. <http://eudml.org/doc/78030>.
@article{Lee2009,
abstract = {For a superprocess under a stochastic flow in one dimension, we prove that it has a density with respect to the Lebesgue measure. A stochastic partial differential equation is derived for the density. The regularity of the solution is then proved by using Krylov’s Lp-theory for linear SPDE.},
author = {Lee, Kijung, Mueller, Carl, Xiong, Jie},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {superprocess; random environment; snake representation; stochastic partial differential equation},
language = {eng},
number = {2},
pages = {477-490},
publisher = {Gauthier-Villars},
title = {Some properties of superprocesses under a stochastic flow},
url = {http://eudml.org/doc/78030},
volume = {45},
year = {2009},
}
TY - JOUR
AU - Lee, Kijung
AU - Mueller, Carl
AU - Xiong, Jie
TI - Some properties of superprocesses under a stochastic flow
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2009
PB - Gauthier-Villars
VL - 45
IS - 2
SP - 477
EP - 490
AB - For a superprocess under a stochastic flow in one dimension, we prove that it has a density with respect to the Lebesgue measure. A stochastic partial differential equation is derived for the density. The regularity of the solution is then proved by using Krylov’s Lp-theory for linear SPDE.
LA - eng
KW - superprocess; random environment; snake representation; stochastic partial differential equation
UR - http://eudml.org/doc/78030
ER -
References
top- [1] D. A. Dawson, Z. Li and H. Wang. Superprocesses with dependent spatial motion and general branching densities. Electron. J. Probab. 6 (2001) 1–33. Zbl1008.60093MR1873302
- [2] D. A. Dawson, J. Vaillancourt and H. Wang. Stochastic partial differential equations for a class of interacting measure-valued diffusions. Ann. Inst. H. Poincaré Probab. Statist. 36 (2000) 167–180. Zbl0973.60077MR1751657
- [3] A. Friedman. Stochastic Differential Equations and Applications, Vol. 1. Academic Press, New York, 1975. Zbl0323.60056MR494490
- [4] N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Processes. North Holland/Kodansha, Amsterdam, 1989. Zbl0684.60040MR1011252
- [5] G. Kallianpur and J. Xiong. Stochastic differential equations on infinite dimensional spaces. IMS Lecture Notes-Monograph Series, Vol. 26, 1995. Zbl0859.60050MR1336880
- [6] N. Konno and T. Shiga. Stochastic partial differential equations for some measure-valued diffusions. Probab. Theory Related Fields 79 (1988) 201–225. Zbl0631.60058MR958288
- [7] N. V. Krylov. An analytic approach to SPDEs, Stochastic partial differential equations: six perspectives, Math. Surveys Monogr. 64 185–242. Amer. Math. Soc., Providence, RI, 1999. Zbl0933.60073MR1661766
- [8] G. Skoulakis and R. J. Adler. Superprocesses over a stochastic flow. Ann. Appl. Probab. 11 (2001) 488–543. Zbl1018.60052MR1843056
- [9] J. B. Walsh. An Introduction to Stochastic Partial Differential Equations. In École d’été de probabilités de Saint-Flour, XIV-1984256–439. Lecture Notes in Math. 1180. Springer-Verlag, Berlin, 1986. Zbl0608.60060MR876085
- [10] H. Wang. State classification for a class of measure-valued branching diffusions in a Brownian medium. Probab. Theory Related Fields 109 (1997) 39–55. Zbl0882.60092MR1469919
- [11] H. Wang. A class of measure-valued branching diffusions in a random medium. Stochastic Anal. Appl. 16 (1998) 753–786. Zbl0913.60091MR1632574
- [12] J. Xiong. A stochastic log-Laplace equation. Ann. Probab. 32 (2004) 2362–2388. Zbl1055.60042MR2078543
- [13] J. Xiong. Long-term behavior for superprocesses over a stochastic flow. Electron. Comm. Probab. 9 (2004) 36–52. Zbl1060.60084MR2081458
- [14] J. Xiong and X. Zhou. Superprocess over a stochastic flow with superprocess catalyst. Internat. J. Pure Appl. Mathematics 17 (2004) 353–382. Zbl1063.60123MR2118977
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.