Strong law of large numbers for the interface in ballistic deposition

Timo Seppäläinen

Annales de l'I.H.P. Probabilités et statistiques (2000)

  • Volume: 36, Issue: 6, page 691-736
  • ISSN: 0246-0203

How to cite

top

Seppäläinen, Timo. "Strong law of large numbers for the interface in ballistic deposition." Annales de l'I.H.P. Probabilités et statistiques 36.6 (2000): 691-736. <http://eudml.org/doc/77676>.

@article{Seppäläinen2000,
author = {Seppäläinen, Timo},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {ballistic deposition; interacting particle system; hydrodynamic limit; Hamilton-Jacobi equation; viscosity solution},
language = {eng},
number = {6},
pages = {691-736},
publisher = {Gauthier-Villars},
title = {Strong law of large numbers for the interface in ballistic deposition},
url = {http://eudml.org/doc/77676},
volume = {36},
year = {2000},
}

TY - JOUR
AU - Seppäläinen, Timo
TI - Strong law of large numbers for the interface in ballistic deposition
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2000
PB - Gauthier-Villars
VL - 36
IS - 6
SP - 691
EP - 736
LA - eng
KW - ballistic deposition; interacting particle system; hydrodynamic limit; Hamilton-Jacobi equation; viscosity solution
UR - http://eudml.org/doc/77676
ER -

References

top
  1. [1] Bahadoran C., Hydrodynamical limit for spatially heterogeneous simple exclusion process, Probab. Theory Related Fields110 (1998) 287-331. Zbl0929.60082MR1616563
  2. [2] Benjamini I., Ferrari P., Landim C., Asymmetric conservative processes with random rates, Stochastic Process. Appl.61 (1996) 181-204. Zbl0849.60093MR1386172
  3. [3] Crandall M.G., Evans L.C., Lions P.L., Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc.282 (1984) 487-502. Zbl0543.35011MR732102
  4. [4] Crandall M.G., Lions P.L., Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc.277 (1983) 1-42. Zbl0599.35024MR690039
  5. [5] De Masi A., Presutti E., Mathematical Methods for Hydrodynamic Limits, Lecture Notes in Mathematics, Vol. 1501, Springer, Berlin, 1991. Zbl0754.60122MR1175626
  6. [6] Durrett R., Ten lectures on particle systems, in: Lecture Notes in Mathematics, Vol. 1608, Springer, 1995, pp. 97-201 (Saint-Flour, 1993). Zbl0840.60088MR1383122
  7. [7] Durrett R., Liggett T., The shape of the limit set in Richardson's growth model, Ann. Probab.9 (1981) 186-193. Zbl0457.60083MR606981
  8. [8] Evans L.C., Partial Differential Equations, American Mathematical Society, 1998. Zbl0902.35002MR1625845
  9. [9] Griffeath D., Additive and Cancellative Interacting Particle Systems, Lecture Notes in Mathematics, Vol. 724, Springer, 1979. Zbl0412.60095MR538077
  10. [10] Grimmett G., Kesten H., First-passage percolation, network flows and electrical resistances, Z. Wahrsch. Verw. Gebiete66 (1984) 335-366. Zbl0525.60098MR751574
  11. [11] Harris T.E., Nearest-neighbor Markov interaction processes on multidimensional lattices, Adv. Math.9 (1972) 66-89. Zbl0267.60107MR307392
  12. [12] Ishii H., Uniqueness of unbounded viscosity solutions of Hamilton-Jacobi equations, Indiana Univ. Math. J.33 (1984) 721-748. Zbl0551.49016MR756156
  13. [13] Kesten H., Aspects of first-passage percolation, in: Lecture Notes in Mathematics, Vol. 1180, Springer, 1986, pp. 125-264. Zbl0602.60098MR876084
  14. [14] Kesten H., On the speed of convergence in first-passage percolation, Ann. Appl. Probab.3 (1993) 296-338. Zbl0783.60103MR1221154
  15. [15] Kipnis C., Landim C., Scaling Limits of Interacting Particle Systems, Grundlehren der mathematischen Wissenschaften, Vol. 320, Springer, Berlin, 1999. Zbl0927.60002MR1707314
  16. [16] Krug J., Meakin P., Microstructure and surface scaling in ballistic deposition at oblique incidence, Physical Review A40 (1989) 2064-2077. 
  17. [17] Krug J., Meakin P., Columnar growth in oblique incidence ballistic deposition: Faceting, noise reduction, and mean-field theory, Physical Review A43 (1991) 900-919. 
  18. [18] Krug J., Spohn H., Kinetic roughening of growing surfaces, in: Godrèche C. (Ed.), Solids far from Equilibrium, Cambridge University Press, 1991, pp. 479-582. 
  19. [19] Liggett T.M., Interacting Particle Systems, Springer, New York, 1985. Zbl0559.60078MR776231
  20. [20] Meakin P., Ramanlal P., Sander L.M., Ball R.C., Ballistic deposition on surfaces, Physical Review A34 (1986) 5091-5103. 
  21. [21] Rezakhanlou F., Continuum limit for some growth models, Preprint, 1999. Zbl1081.82016MR1921440
  22. [22] Rockafellar R.T., Convex Analysis, Princeton University Press, 1970. Zbl0193.18401MR274683
  23. [23] Rost H., Non-equilibrium behaviour of a many particle process: Density profile and local equilibrium, Z. Wahrsch. Verw. Gebiete58 (1981) 41-53. Zbl0451.60097MR635270
  24. [24] Seppäläinen T., Exact limiting shape for a simplified model of first-passage percolation on the plane, Ann. Probab.26 (1998) 1232-1250. Zbl0935.60093MR1640344
  25. [25] Seppäläinen T., Coupling the totally asymmetric simple exclusion process with a moving interface (I Escola Brasileira de Probabilidade, IMPA, Rio de Janeiro, 1997), Markov Process. Related Fields4 (1998) 593-628. Zbl0922.60094MR1677061
  26. [26] Seppäläinen T., Existence of hydrodynamics for the totally asymmetric simple K-exclusion process, Ann. Probab.27 (1999) 361-415. Zbl0947.60088MR1681094
  27. [27] Seppäläinen T., Krug J., Hydrodynamics and platoon formation for a totally asymmetric exclusion model with particlewise disorder, J. Statist. Phys.95 (1999) 529-571. Zbl0964.82041MR1700871
  28. [28] Smythe R.T., Wierman J.C., First-passage percolation on the square lattice, Lecture Notes in Mathematics, Vol. 671, Springer, 1978. Zbl0379.60001MR513421
  29. [29] Spohn H., Large Scale Dynamics of Interacting Particles, Springer, Berlin, 1991. Zbl0742.76002
  30. [30] Talagrand M., Concentration of measure and isoperimetric inequalities in product spaces, Inst. Hautes Études Sci. Publ. Math.81 (1995) 73-205. Zbl0864.60013MR1361756

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.