Clark–Ocone formulas and Poincaré inequalities on the discrete cube

Cécile Ané

Annales de l'I.H.P. Probabilités et statistiques (2001)

  • Volume: 37, Issue: 1, page 101-137
  • ISSN: 0246-0203

How to cite

top

Ané, Cécile. "Clark–Ocone formulas and Poincaré inequalities on the discrete cube." Annales de l'I.H.P. Probabilités et statistiques 37.1 (2001): 101-137. <http://eudml.org/doc/77681>.

@article{Ané2001,
author = {Ané, Cécile},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Poincaré inequality; Clark-Ocone formula; continuous time random walk},
language = {eng},
number = {1},
pages = {101-137},
publisher = {Elsevier},
title = {Clark–Ocone formulas and Poincaré inequalities on the discrete cube},
url = {http://eudml.org/doc/77681},
volume = {37},
year = {2001},
}

TY - JOUR
AU - Ané, Cécile
TI - Clark–Ocone formulas and Poincaré inequalities on the discrete cube
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2001
PB - Elsevier
VL - 37
IS - 1
SP - 101
EP - 137
LA - eng
KW - Poincaré inequality; Clark-Ocone formula; continuous time random walk
UR - http://eudml.org/doc/77681
ER -

References

top
  1. 1 C Ané, M Ledoux, On logarithmic sobolev inequalities for continuous time random walks on graphs, Probab. Theor. Relat. FieldsVol. 116 (4) (2000) 573-602. Zbl0964.60063MR1757600
  2. 2 K Bichteler, J.-B Gravereaux, J Jacod, Malliavin Calculus for Processes with Jumps, Gordon and Breach, New York, 1987. Zbl0706.60057MR1008471
  3. 3 M Capitaine, E.P Hsu, M Ledoux, Martingale representation and a simple proof of logarithmic Sobolev inequalities on path spaces, Electron. Comm. Probab.Vol. 2 (1997) 71-81. Zbl0890.60045MR1484557
  4. 4 E.A Carlen, É Pardoux, Differential calculus and integration by parts on Poisson space, in: Stochastics, Algebra and Analysis in Classical and Quantum Dynamics (Marseille, 1988), Kluwer, Dordrecht, 1990, pp. 63-73. Zbl0685.60056MR1052702
  5. 5 C Dellacherie, P.-A Meyer, Probabilités et potentiel, Hermann, Paris, 1980, Chapitres V à VIII. Théorie des martingales. [Martingale theory]. Zbl0464.60001MR566768
  6. 6 E.P Hsu, Logarithmic Sobolev inequalities on path spaces over Riemannian manifolds, Comm. Math. Phys.Vol. 189 (1) (1997) 9-16. Zbl0892.58083MR1478528
  7. 7 J Jacod, A.N Shiryaev, Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin, 1987. Zbl0635.60021MR959133
  8. 8 D Nualart, J Vives, Anticipative calculus for the Poisson process based on the Fock space, in: In Séminaire de Probabilités, XXIV, 1988/89, Springer, Berlin, 1990, pp. 154-165. Zbl0701.60048MR1071538
  9. 9 J Picard, Formules de dualité sur l'espace de Poisson, Ann. Inst. H. Poincaré Probab. Statist.Vol. 32 (4) (1996) 509-548. Zbl0859.60045MR1411270
  10. 10 N Privault, Chaotic and variational calculus in discrete and continuous time for the Poisson process, Stochastics Stochastics Rep.Vol. 51 (1–2) (1994) 83-109. Zbl0851.60052MR1380764
  11. 11 Wu L., A new modified logarithmic Sobolev inequality for Poisson point processes and several applications, Probab. Theor. Relat. Fields (2000) to appear. Zbl0970.60093MR1800540

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.