Uniqueness for Gibbs measures of quantum lattices in small mass regime

Sergio Albeverio; Yuri Kondratiev; Yuri Kozitsky; Michael Röckner

Annales de l'I.H.P. Probabilités et statistiques (2001)

  • Volume: 37, Issue: 1, page 43-69
  • ISSN: 0246-0203

How to cite

top

Albeverio, Sergio, et al. "Uniqueness for Gibbs measures of quantum lattices in small mass regime." Annales de l'I.H.P. Probabilités et statistiques 37.1 (2001): 43-69. <http://eudml.org/doc/77683>.

@article{Albeverio2001,
author = {Albeverio, Sergio, Kondratiev, Yuri, Kozitsky, Yuri, Röckner, Michael},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {quantum spin systems; tempered Gibbs measures; Dobrushin's uniqueness criterion},
language = {eng},
number = {1},
pages = {43-69},
publisher = {Elsevier},
title = {Uniqueness for Gibbs measures of quantum lattices in small mass regime},
url = {http://eudml.org/doc/77683},
volume = {37},
year = {2001},
}

TY - JOUR
AU - Albeverio, Sergio
AU - Kondratiev, Yuri
AU - Kozitsky, Yuri
AU - Röckner, Michael
TI - Uniqueness for Gibbs measures of quantum lattices in small mass regime
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2001
PB - Elsevier
VL - 37
IS - 1
SP - 43
EP - 69
LA - eng
KW - quantum spin systems; tempered Gibbs measures; Dobrushin's uniqueness criterion
UR - http://eudml.org/doc/77683
ER -

References

top
  1. 1 S Albeverio, R Høegh-Krohn, Homogeneous random fields and quantum statistical mechanics, J. Funct. Anal.Vol. 19 (1975) 242-272. Zbl0381.60049MR378150
  2. 2 S Albeverio, R Høegh-Krohn, Mathematical Theory of Feynman Path Integrals, Lecture Notes in Math. 523, Springer, Berlin, 1976. Zbl0337.28009MR495901
  3. 3 S Albeverio, Yu.G Kondratiev, Yu.V Kozitsky, Absence of critical points for a class of quantum hierarchical models, Comm. Math. Phys.Vol. 187 (1997) 1-18. Zbl0878.46046MR1463820
  4. 4 S Albeverio, Yu.G Kondratiev, Yu.V Kozitsky, Suppression of critical fluctuations by strong quantum effects in quantum lattice systems, Comm. Math. Phys.Vol. 194 (1998) 493-512. Zbl0930.60088MR1631465
  5. 5 Albeverio S., Kondratiev Yu.G., Kozitsky Yu.V., Röckner M., Euclidean Gibbs states of quantum lattice systems, in preparation. Zbl1029.82006
  6. 6 S Albeverio, Yu.G Kondratiev, R.A Minlos, A.L Rebenko, Small mass behaviour of quantum Gibbs states for lattice models with unbounded spins, J. Statist. Phys.Vol. 92 (1998) 1153-1172. Zbl0953.82005MR1657797
  7. 7 S Albeverio, Yu.G Kondratiev, M Röckner, T.V Tsikalenko, Uniqueness of Gibbs states for quantum lattice systems, Probab. Theory Relat. FieldsVol. 108 (1997) 193-218. Zbl0883.60094MR1452556
  8. 8 S Albeverio, Yu.G Kondratiev, M Röckner, T.V Tsikalenko, Uniqueness of Gibbs states on loop lattices, C. R. Acad. Sci. Paris, Sér. IVol. 342 (1997) 1401-1406. Zbl0883.60093MR1457095
  9. 9 S Albeverio, Yu.G Kondratiev, M Röckner, T.V Tsikalenko, Dobrushin's uniqueness for quantum lattice systems with nonlocal interaction, Comm. Math. Phys.Vol. 189 (1997) 621-630. Zbl0888.60094MR1480036
  10. 10 Albeverio S., Kondratiev Yu.G., Röckner M., Tsikalenko T.V., Glauber dynamics for quantum lattice systems, Rev. Math. Phys., to appear. Zbl1081.82018MR1813614
  11. 11 V.S Barbulyak, Yu.G Kondratiev, Functional integrals and quantum lattice systems: I. Existence of Gibbs states, Reports Nat. Acad. Sci. of UkraineVol. 9 (1991) 38-40. 
  12. 12 V.S Barbulyak, Yu.G Kondratiev, Functional integrals and quantum lattice systems: II. Periodic Gibbs states, Reports Nat. Acad. Sci. of UkraineVol. 8 (1991) 31-34. 
  13. 13 V.S Barbulyak, Yu.G Kondratiev, Functional integrals and quantum lattice systems: III. Phase transitions, Reports Nat. Acad. Sci. of UkraineVol. 10 (1991) 19-21. MR1153563
  14. 14 V.S Barbulyak, Yu.G Kondratiev, A criterion for the existence of periodic Gibbs states of quantum lattice systems, Selecta Math. (N.S.)Vol. 12 (1993) 25-35. Zbl0787.58046MR1215524
  15. 15 F.A Berezin, M.A Shubin, The Schrödinger Equation, Kluwer Academic Publishers, Dordrecht, 1991. Zbl0749.35001MR1186643
  16. 16 O Bratteli, D.W Robinson, Operator Algebras and Quantum Statistical Mechanics, I, II, Springer, New York, 1981. Zbl0905.46046MR611508
  17. 17 A.D Bruce, R.A Cowley, Structural Phase Transition, Taylor and Francis, 1981. 
  18. 18 R.L Dobrushin, Prescribing a system of random variables by conditional distributions, Theory Probab. Appl.Vol. 15 (1970) 458-486. Zbl0264.60037
  19. 19 R.L Dobrushin, S.B Shlosman, Constructive criterion for the uniqueness of Gibbs field, in: Statistical Physics and Dynamical Systems. Rigorous Results, Birkhäuser, Basel, 1985, pp. 347-370. Zbl0569.46042MR821306
  20. 20 W Driesler, L Landau, J.F Perez, Estimates of critical lengths and critical temperatures for classical and quantum lattice systems, J. Statist. Phys.Vol. 20 (1979) 123-162. MR523638
  21. 21 F.J Dyson, E.H Lieb, B Simon, Phase transitions in quantum spin systems with isotropic and nonisotropic interactions, J. Statist. Phys.Vol. 18 (1978) 335-383. MR496246
  22. 22 H.O Georgii, Gibbs Measures and Phase Transition, Walter de Gruyter, Springer, Berlin, 1988. Zbl0657.60122MR956646
  23. 23 S.A Globa, Yu.G Kondratiev, The construction of Gibbs states of quantum lattice systems, Selecta Math. Sov.Vol. 9 (1990) 297-307. Zbl0705.60102
  24. 24 F Guerra, L Rosen, B Simon, Boundary conditions in the P(ϕ)2 Euclidean field theory, Ann. Inst. H. PoincaréVol. 15 (1976) 231-334. 
  25. 25 A Klein, L Landau, Stochastic processes associated with KMS states, J. Funct. Anal.Vol. 42 (1981) 368-428. Zbl0498.60098MR626451
  26. 26 Yu.G Kondratiev, Phase transitions in quantum models of ferroelectrics, in: Stochastic Processes, Physics, and Geometry II, World Scientific, Singapore, 1994, pp. 465-475. Zbl0960.82536
  27. 27 Kozitsky Yu., Quantum effects in a lattice model of anharmonic vector oscillators, Letters in Math. Phys. (2000), to appear. Zbl1072.82512MR1773204
  28. 28 H Künsch, Decay of correlations under Dobrushin's uniqueness condition and its applications, Comm. Math. Phys.Vol. 84 (1982) 207-222. Zbl0495.60097MR661133
  29. 29 R.A Minlos, A Verbeure, V.A Zagrebnov, A quantum crystal model in the light mass limit Gibbs state, Preprint-KUL-TF-97/16, 1997. Zbl0976.82010
  30. 30 L.A Pastur, B.A Khoruzhenko, Phase transitions in quantum models of rotators and ferroelectrics, Theoret. Math. Phys.Vol. 73 (1987) 111-124. MR939799
  31. 31 M Reed, B Simon, Methods of Modern Mathematical Physics. Functional Analysis, Vol. I, Academic Press, New York, 1972. Zbl0242.46001
  32. 32 T Schneider, H Beck, E Stoll, Quantum effects in an n-component vector model for structural phase transition, Phys. Rev.Vol. B13 (1976) 1123-1130. 
  33. 33 B Simon, The P(ϕ)2 Euclidean (Quantum) Field Theory, Princeton Univ. Press, 1974. 
  34. 34 B Simon, Functional Integrals in Quantum Physics, Academic Press, New York, 1986. 
  35. 35 S Stamenković, Unified model description of order-disorder and displacive structural phase transitions, Condensed Matter PhysicsVol. 1(14) (1998) 257-309. 
  36. 36 A Verbeure, V.A Zagrebnov, No–Go theorem for quantum structural phase transition, J. Phys. A: Math. Gen.Vol. 28 (1995) 5415-5421. Zbl0871.46043MR1364147

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.