On extremal measures for conservative particle systems
Annales de l'I.H.P. Probabilités et statistiques (2001)
- Volume: 37, Issue: 2, page 139-154
- ISSN: 0246-0203
Access Full Article
topHow to cite
topSethuraman, Sunder. "On extremal measures for conservative particle systems." Annales de l'I.H.P. Probabilités et statistiques 37.2 (2001): 139-154. <http://eudml.org/doc/77685>.
@article{Sethuraman2001,
author = {Sethuraman, Sunder},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {simple exclusion process; zero-range process; misanthrope process; invariant measures; extreme points; Dirichlet form},
language = {eng},
number = {2},
pages = {139-154},
publisher = {Elsevier},
title = {On extremal measures for conservative particle systems},
url = {http://eudml.org/doc/77685},
volume = {37},
year = {2001},
}
TY - JOUR
AU - Sethuraman, Sunder
TI - On extremal measures for conservative particle systems
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2001
PB - Elsevier
VL - 37
IS - 2
SP - 139
EP - 154
LA - eng
KW - simple exclusion process; zero-range process; misanthrope process; invariant measures; extreme points; Dirichlet form
UR - http://eudml.org/doc/77685
ER -
References
top- [1] S Albeverio, Y.G Kondratiev, M Rockner, Ergodicity of L2-semigroups and extremality of Gibbs states, J. Funct. Anal.144 (1997) 394-423. Zbl0880.60098MR1432591
- [2] D Aldous, J Pitman, On the zero–one law for exchangeable events, Ann. Probab.7 (1979) 704-723. Zbl0414.60042MR537216
- [3] E.D Andjel, Invariant measures for the zero range process, Ann. Probab.10 (1982) 525-547. Zbl0492.60096MR659526
- [4] E Andjel, C Cocozza-Thivent, M Roussignol, Quelqes complements sur le processus des misanthropes et le processus “zero-range”, Ann. Inst. Henri Poincare21 (4) (1985) 363-382.
- [5] C Cocozza-Thivent, Processus des misanthropes, Z. Wahr. Verw. Gebiete70 (1985) 509-523. Zbl0554.60097MR807334
- [6] S Ethier, T Kurtz, Markov Processes: Characterization and Convergence, Wiley, New York, 1986. Zbl0592.60049MR838085
- [7] H.O Georgii, Canonical Gibbs Measures, Lecture Notes in Mathematics, 760, Springer-Verlag, Berlin, 1979. Zbl0409.60094MR551621
- [8] M.Z Guo, G Papanicolaou, Self-diffusion of interacting brownian particles, in: Prob. Methods in Math. Phys., Taniguchi Symp. Katata/Kyoto, Academic Press, 1985, pp. 113-151. Zbl0656.60109MR933821
- [9] T.M Liggett, Random invariant measures for Markov chains, and independent particle systems, Z. Wahr. Verw. Gebiete45 (1978) 297-313. Zbl0373.60076MR511776
- [10] T.M Liggett, Interacting Particle Systems, Springer-Verlag, New York, 1985. Zbl0559.60078MR776231
- [11] J Mineka, A criterion for tail events for sums of independent random variables, Z. Wahr. Verw. Gebiete25 (1973) 163-170. Zbl0237.60024MR350890
- [12] V.V Petrov, Sums of Independent Random Variables, Springer-Verlag, New York, 1975. Zbl0322.60042MR388499
- [13] M Rosenblatt, Transition probability operators, in: Proc. Fifth Berkeley Symp. Math. Statist. Prob., Vol. 2, 1967, pp. 473-483. Zbl0222.60042MR212877
- [14] M Rosenblatt, Markov Processes. Structure and Asymptotic Behavior, Springer-Verlag, New York, 1971. Zbl0236.60002MR329037
- [15] E Saada, A limit theorem for the position of a tagged particle in a simple exclusion process, Ann. Probab.15 (1) (1987) 375-381. Zbl0617.60096MR877609
- [16] E Saada, Processus de zero-range avec particule marquee, Ann. Inst. Henri Poincare26 (1) (1990) 5-17. Zbl0703.60101MR1075436
- [17] S Sethuraman, L Xu, A central limit theorem for reversible exclusion and zero-range particle systems, Ann. Probab.24 (4) (1996) 1842-1870. Zbl0872.60079MR1415231
- [18] H Spohn, Large Scale Dynamics of Interacting Particles, Springer-Verlag, Berlin, 1991. Zbl0742.76002
- [19] E Waymire, Zero range interaction at Bose–Einstein speeds under a positive recurrent single particle law, Ann. Probab.8 (1980) 441-450. Zbl0442.60095MR573285
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.