Moderate deviations for functional U-processes
Annales de l'I.H.P. Probabilités et statistiques (2001)
- Volume: 37, Issue: 2, page 245-273
- ISSN: 0246-0203
Access Full Article
topHow to cite
topEichelsbacher, Peter. "Moderate deviations for functional U-processes." Annales de l'I.H.P. Probabilités et statistiques 37.2 (2001): 245-273. <http://eudml.org/doc/77689>.
@article{Eichelsbacher2001,
author = {Eichelsbacher, Peter},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {moderate deviations; -processes; partial sums; VC-classes; decoupling inequality; maximal inequality for -statistics; Bernstein-type inequality},
language = {eng},
number = {2},
pages = {245-273},
publisher = {Elsevier},
title = {Moderate deviations for functional U-processes},
url = {http://eudml.org/doc/77689},
volume = {37},
year = {2001},
}
TY - JOUR
AU - Eichelsbacher, Peter
TI - Moderate deviations for functional U-processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2001
PB - Elsevier
VL - 37
IS - 2
SP - 245
EP - 273
LA - eng
KW - moderate deviations; -processes; partial sums; VC-classes; decoupling inequality; maximal inequality for -statistics; Bernstein-type inequality
UR - http://eudml.org/doc/77689
ER -
References
top- [1] M.A Arcones, E Giné, Limit theorems for U-processes, Ann. Probab.21 (1993) 1494-1542. Zbl0789.60031MR1235426
- [2] M.A Arcones, E Giné, U-processes indexed by Vapnik–Červonenkis classes of functions with applications to asymptotics and bootstrap of U-statistics with estimated parameters, Stochastic Process. Appl.52 (1994) 17-38. Zbl0807.62014MR1289166
- [3] M.A Arcones, E Giné, On the law of the iterated logarithm for canonical U-statistics and processes, Stochastic Process. Appl.58 (1995) 217-245. Zbl0829.60003MR1348376
- [4] P Baldi, Large deviations and stochastic homogenization, Ann. Mat. Pura Appl.151 (1988) 161-177. Zbl0654.60024MR964508
- [5] A.A Borovkov, A.A Mogulskii, Probabilities of large deviations in topological spaces I, Siberian Math. J.19 (1978) 697-709. Zbl0413.60021MR508496
- [6] A.A Borovkov, A.A Mogulskii, Probabilities of large deviations in topological spaces II, Siberian Math. J.21 (1980) 653-664. Zbl0458.60019MR592213
- [7] Yu.V Borovskikh, U-Statistics in Banach Spaces, VSP, Utrecht, 1996. Zbl0865.60004MR1419498
- [8] A Dembo, T Zajic, Uniform large and moderate deviations for functional empirical processes, Stochastic Process. Appl.67 (1997) 195-211. Zbl0890.60022MR1449831
- [9] A Dembo, O Zeitouni, Large Deviations Techniques and Applications, Springer, New York, 1998. Zbl0896.60013MR1619036
- [10] R.M Dudley, A course on empirical processes, in: Dold A, Eckmann B (Eds.), École d'Eté de Probabilités de Saint-Flour XII, Lecture Notes in Math., 1097, Springer, New York, 1984, pp. 1-142. Zbl0554.60029MR876079
- [11] P Eichelsbacher, Large deviations for products of empirical probability measures in the τ-topology, J. Theoret. Probab.10 (4) (1997) 903-920. Zbl0891.60031
- [12] P Eichelsbacher, M Löwe, Large deviations for partial sums U-processes, Theory Probab. Appl.43 (1998) 97-115. Zbl0927.60047MR1669988
- [13] P Eichelsbacher, U Schmock, Exponential approximations in completely regular topological spaces and extensions of Sanov's theorem, Stochastic Process. Appl.77 (2) (1998) 233-251. Zbl0934.60023MR1649006
- [14] P Eichelsbacher, U Schmock, Large and rank-dependent moderate deviations for U-empirical measures in strong topologies, preprint, 1998. Zbl1039.60023MR1981633
- [15] E Giné, V de la Peña, Decoupling: From Dependence to Independence, Springer-Verlag, 1999. Zbl0918.60021MR1666908
- [16] E Giné, C.-H Zhang, On integrability in the LIL for degenerate U-statistics, J. Theoret. Probab.9 (2) (1996) 385-412. Zbl0873.60015MR1385404
- [17] P Hall, On the invariance principle for U-statistics, Stochastic Process. Appl.9 (1979) 163-174. Zbl0422.62019MR548836
- [18] W Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc.58 (1963) 13-30. Zbl0127.10602MR144363
- [19] M Ledoux, M Talagrand, Probability in Banach Spaces, Springer-Verlag, Berlin, 1991. Zbl0748.60004MR1102015
- [20] A Mandelbaum, M.S Taqqu, Invariance principle for symmetric statistics, Ann. Statist.12 (1984) 483-496. Zbl0547.60039MR740907
- [21] R.G Miller, P.K Sen, Weak convergence of U-statistics and von Mises differentiable, Ann. Math. Statist.43 (1972) 31-41. Zbl0238.62057MR300321
- [22] A.A Mogulskii, Large deviations for trajectories of multidimensional random walks, Theory Probab. Appl.21 (1976) 300-315. Zbl0366.60031MR420798
- [23] S.J Montgomery-Smith, Comparison of sums of independent identically distributed random vectors, Probab. Math. Statist.14 (2) (1994) 281-285. Zbl0827.60005MR1321767
- [24] S.J Montgomery-Smith, V de la Peña, Decoupling inequalities for the tail probabilities of multivariate U-statistics, Ann. Probab.23 (2) (1995) 806-816. Zbl0827.60014MR1334173
- [25] D Pollard, Convergence of Stochastic Processes, Springer, New York, 1984. Zbl0544.60045MR762984
- [26] M Talagrand, Sharper bounds for gaussian and empirical processes, Ann. Probab.22 (1) (1994) 28-76. Zbl0798.60051MR1258865
- [27] L Wu, Large deviations, moderate deviations and LIL for empirical processes, Ann. Probab.22 (1) (1994) 17-27. Zbl0793.60032MR1258864
- [28] V.V Yurinsky, Exponential inequalities for sums of random vectors, J. Mult. Anal.6 (4) (1976) 473-499. Zbl0346.60001MR428401
- [29] V.V Yurinsky, Sums and Gaussian Vectors, Lecture Notes in Mathematics, 1617, Springer-Verlag, Berlin, 1995. Zbl0846.60003MR1442713
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.