Coupled map lattices with asynchronous updatings

Torsten Fischer

Annales de l'I.H.P. Probabilités et statistiques (2001)

  • Volume: 37, Issue: 4, page 421-479
  • ISSN: 0246-0203

How to cite

top

Fischer, Torsten. "Coupled map lattices with asynchronous updatings." Annales de l'I.H.P. Probabilités et statistiques 37.4 (2001): 421-479. <http://eudml.org/doc/77695>.

@article{Fischer2001,
author = {Fischer, Torsten},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {coupled map lattices; Poisson updatings at the individual sites; Markov kernel},
language = {eng},
number = {4},
pages = {421-479},
publisher = {Elsevier},
title = {Coupled map lattices with asynchronous updatings},
url = {http://eudml.org/doc/77695},
volume = {37},
year = {2001},
}

TY - JOUR
AU - Fischer, Torsten
TI - Coupled map lattices with asynchronous updatings
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2001
PB - Elsevier
VL - 37
IS - 4
SP - 421
EP - 479
LA - eng
KW - coupled map lattices; Poisson updatings at the individual sites; Markov kernel
UR - http://eudml.org/doc/77695
ER -

References

top
  1. [1] L Arnold, Random Dynamical Systems, Springer, 1998. Zbl0906.34001MR1374107
  2. [2] V Baladi, M Degli Esposti, S Isola, E Järvenpää, A Kupiainen, The spectrum of weakly coupled map lattices, J. Math. Pures et Appl.77 (1998) 539-584. Zbl1023.37009MR1628169
  3. [3] H Bauer, Wahrscheinlichkeitstheorie, de Gruyter, 1991. Zbl0714.60001MR1150240
  4. [4] J Bricmont, A Kupiainen, Coupled analytic maps, Nonlinearity8 (1995) 379-396. Zbl0836.58027MR1331818
  5. [5] J Bricmont, A Kupiainen, High temperature expansions and dynamical systems, Comm. Math. Phys.178 (1996) 703-732. Zbl0859.58037MR1395211
  6. [6] J Bricmont, A Kupiainen, Infinite dimensional SRB-measures. Lattice dynamics (Paris, 1995), Physica D103 (1997) 1-4, 18–33. Zbl1194.82061MR1464238
  7. [7] L.A Bunimovich, Coupled map lattices: One step forward and two steps back, Physica D86 (1995) 248-255. Zbl0890.58029MR1353959
  8. [8] L.A Bunimovich, Y.G Sinai, Space-time chaos in coupled map lattices, Nonlinearity1 (1988) 491-516. Zbl0679.58028MR967468
  9. [9] R.L Dobrushin, Markov processes with a large number of locally interacting components: existence of a limit process and its ergodicity, Problems Inform. Transmission7 (1971) 149-164. MR310999
  10. [10] R.L Dobrushin, Markov processes with many locally interacting components – the reversible case and some generalizations, Problems Inform. Transmission7 (1971) 235-241. 
  11. [11] Dobrushin R.L, Sinai Ya.G (Eds.), Multicomponent Random Systems, Advances in Probability and Related Topics, 6, 1980, (originally published in Russian). Zbl0425.00018MR599530
  12. [12] T Fischer, Transfer operators for deterministic and stochastic coupled map lattices, Thesis, University of Warwick, 1998. 
  13. [13] T Fischer, H.H Rugh, Transfer operators for coupled analytic maps, Ergodic Theory Dynamical Systems20 (2000) 109-143. Zbl0984.37025MR1747027
  14. [14] R.J Glauber, Time-dependent statistics of the Ising model, J. Math. Phys.4 (1963) 294-307. Zbl0145.24003MR148410
  15. [15] T.E Harris, Nearest-neighbor Markov interaction processes on multidimensional lattices, Adv. Math.9 (1972) 66-89. Zbl0267.60107MR307392
  16. [16] R Holley, A class of interactions in an infinite particle system, Adv. Math.5 (1970) 291-309. Zbl0219.60054MR268960
  17. [17] M Jiang, Equilibrium states for lattice models of hyperbolic type, Nonlinearity8 (5) (1994) 631-659. Zbl0836.58032MR1355036
  18. [18] M Jiang, Ergodic properties of coupled map lattices of hyperbolic type, Penns. State University Dissertation, 1995. 
  19. [19] M Jiang, A Mazel, uniqueness of Gibbs states and exponential decay of correlation for some lattice models, J. Statist. Phys.82 (3–4) (1995). MR1372428
  20. [20] M Jiang, Ya.B Pesin, Equilibrium measures for coupled map lattices: existence, uniqueness and finite-dimensional approximations, CMP193 (1998) 675-711. Zbl0944.37005MR1624859
  21. [21] G Keller, M Künzle, Transfer operators for coupled map lattices, Ergodic Theory Dynamical Systems12 (1992) 297-318. Zbl0737.58032MR1176625
  22. [22] S Lang, Real and Functional Analysis, Springer, 1993. Zbl0831.46001MR1216137
  23. [23] T.M Liggett, Existence theorems for infinite particle systems, Trans. Amer. Math. Soc.165 (1972) 471-481. Zbl0239.60072MR309218
  24. [24] T.M Liggett, Interacting Particle Systems, Grundlehren der mathematischen Wissenschaften, 276, Springer, 1985. Zbl0559.60078MR776231
  25. [25] C Maes, A Van Moffaert, Stochastic stability of weakly coupled lattice maps, Nonlinearity10 (1997) 715-730. Zbl0962.82010MR1448583
  26. [26] Ya.B Pesin, Ya.G Sinai, Space-time chaos in chains of weakly interacting hyperbolic mappings, Adv. Soviet Math.3 (1991) 165-198. Zbl0850.70250MR1118162
  27. [27] F Spitzer, Random processes defined through the interaction of an infinite particle system, in: Springer Lecture Notes in Mathematics, 89, Springer, 1969, pp. 201-223. Zbl0181.43601MR268964
  28. [28] F Spitzer, Interaction of Markov processes, Adv. Math.5 (1970) 246-290. Zbl0312.60060MR268959
  29. [29] D.L Volevich, The Sinai–Bowen–Ruelle measure for a multidimensional lattice of interacting hyperbolic mappings, Russ. Akad. Dokl. Math.47 (1993) 117-121. Zbl0823.58025MR1218960
  30. [30] D.L Volevich, Construction of an analogue of Bowen–Ruell–Sinai measure for a multidimensional lattice of interacting hyperbolic mappings, Russ. Akad. Math. Sbornik79 (1994) 347-363. Zbl0821.58027MR1239757

NotesEmbed ?

top

You must be logged in to post comments.