Large deviations for the range of an integer valued random walk
Annales de l'I.H.P. Probabilités et statistiques (2002)
- Volume: 38, Issue: 1, page 17-58
- ISSN: 0246-0203
Access Full Article
topHow to cite
topHamana, Yuji, and Kesten, Harry. "Large deviations for the range of an integer valued random walk." Annales de l'I.H.P. Probabilités et statistiques 38.1 (2002): 17-58. <http://eudml.org/doc/77707>.
@article{Hamana2002,
author = {Hamana, Yuji, Kesten, Harry},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {large deviations; range of a random walk},
language = {eng},
number = {1},
pages = {17-58},
publisher = {Elsevier},
title = {Large deviations for the range of an integer valued random walk},
url = {http://eudml.org/doc/77707},
volume = {38},
year = {2002},
}
TY - JOUR
AU - Hamana, Yuji
AU - Kesten, Harry
TI - Large deviations for the range of an integer valued random walk
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2002
PB - Elsevier
VL - 38
IS - 1
SP - 17
EP - 58
LA - eng
KW - large deviations; range of a random walk
UR - http://eudml.org/doc/77707
ER -
References
top- [1] P. Billingsley, Probability and Measure, Wiley, 1986. Zbl0411.60001MR830424
- [2] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, Springer-Verlag, 1998. Zbl0896.60013MR1619036
- [3] W. Feller, An Introduction to Probability Theory and its Applications, Vol. I, Wiley, 1968. Zbl0039.13201MR228020
- [4] Y. Hamana, H. Kesten, A large deviation result for the range of a random walk and for the Wiener sausage, Probab. Theory Related Fields (2001). Zbl1015.60092MR1841327
- [5] J.M. Hammersley, D.J.A. Welsh, Further results on the rate of convergence to the connective constant of the hypercubical lattice, Quart. J. Math, 2nd series13 (1962) 108-110. Zbl0123.00304MR139535
- [6] G. Pólya, G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Springer-Verlag, 1954. Zbl0055.27803
- [7] F. Spitzer, Discussion of “Subadditive ergodic theory” by J.F.C. Kingman, Ann. Probab.1 (1973) 904-905.
- [8] F. Spitzer, Principles of Random Walk, Springer-Verlag, 1976. Zbl0359.60003MR388547
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.