On regular points in Burgers turbulence with stable noise initial data

Christophe Giraud

Annales de l'I.H.P. Probabilités et statistiques (2002)

  • Volume: 38, Issue: 2, page 229-251
  • ISSN: 0246-0203

How to cite

top

Giraud, Christophe. "On regular points in Burgers turbulence with stable noise initial data." Annales de l'I.H.P. Probabilités et statistiques 38.2 (2002): 229-251. <http://eudml.org/doc/77715>.

@article{Giraud2002,
author = {Giraud, Christophe},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Burgers turbulence; stable Lévy noise; regular points},
language = {eng},
number = {2},
pages = {229-251},
publisher = {Elsevier},
title = {On regular points in Burgers turbulence with stable noise initial data},
url = {http://eudml.org/doc/77715},
volume = {38},
year = {2002},
}

TY - JOUR
AU - Giraud, Christophe
TI - On regular points in Burgers turbulence with stable noise initial data
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2002
PB - Elsevier
VL - 38
IS - 2
SP - 229
EP - 251
LA - eng
KW - Burgers turbulence; stable Lévy noise; regular points
UR - http://eudml.org/doc/77715
ER -

References

top
  1. [1] M. Avellaneda, W. E, Statistical properties of shocks in Burgers turbulence, Comm. Math. Phys.172 (1995) 13-38. Zbl0844.35144MR1346370
  2. [2] M. Avellaneda, Statistical properties of shocks in Burgers turbulence II, Comm. Math. Phys.169 (1995) 45-59. Zbl0857.35143MR1328261
  3. [3] J. Bertoin, Lévy Processes, Cambridge University Press, Cambridge, 1996. Zbl0861.60003MR1406564
  4. [4] J. Bertoin, The inviscid Burgers equation with brownian initial velocity, Comm. Math. Phys.193 (1998) 397-406. Zbl0917.60063MR1618139
  5. [5] J. Bertoin, Large deviation estimate in Burgers turbulence with stable noise initial data, J. Stat. Phys.91 (1998) 655-667. Zbl0927.60039MR1632714
  6. [6] J. Bertoin, Structure of shocks in Burgers turbulence with stable noise initial data, Comm. Math. Phys.203 (1999) 729-741. Zbl0943.60055MR1700933
  7. [7] J.M. Burgers, The Nonlinear Diffusion Equation, Dordrecht, Reidel, 1974. Zbl0302.60048
  8. [8] J.D. Cole, On a quasi linear parabolic equation occuring in aerodynamics, Quart. Appl. Math.9 (1951) 225-236. Zbl0043.09902MR42889
  9. [9] L. Frachebourg, Ph.A. Martin, Exact statistical properties of the Burgers equation, J. Fluid. Mech.417 (2000) 69-99. Zbl0961.76016MR1781884
  10. [10] B.E. Fristedt, Uniform local behavior of stable subordinators, Ann. Probab.7 (1979) 1003-1013. Zbl0438.60060MR548894
  11. [11] R.K. Getoor, Splitting times and shift functionals, Z. Wahrscheinlichkeitstheorie Verw. Gebiete47 (1979) 69-81. Zbl0394.60073MR521533
  12. [12] P. Groeneboom, Brownian motion with a parabolic drift Airy functions, Probab. Theory Related Fields81 (1989) 79-109. MR981568
  13. [13] H. Handa, A remark on shocks in inviscid Burgers turbulence, in: Fitzmaurice, (Eds.), Non-linear Waves Weak Turbulence, Birkhäuser, Boston, 1992, pp. 339-345. Zbl0803.76051MR1276520
  14. [14] J. Hawkes, A lower Lipschitz condition for the stable subordinators, Z. Wahrscheinlichkeitstheorie Verw. Gebiete17 (1971) 23-32. Zbl0193.45002MR282413
  15. [15] E. Hopf, The partial differential equation ut+uux=μuxx, Comm. Pure Appl. Math.3 (1950) 201-230. Zbl0039.10403
  16. [16] A. Janicki, W.A. Woyczynski, Hausdorff dimension of regular points in stochastic flows with Lévy α-stable initial data, J. Stat. Phys.86 (1997) 277-299. Zbl0952.35504
  17. [17] N. Leonenko, Limit Theorems for Random Fields with Singular Spectrum, Math. Appl., Kluwers Academic, 1999. Zbl0963.60048MR1687092
  18. [18] R. Ryan, Large-deviation analysis of Burgers turbulence with white-noise initial data, Comm. Pure Appl. Math.51 (1998) 47-75. Zbl0908.35144MR1486631
  19. [19] Z. She, E. Aurell, U. Frisch, The inviscid Burgers equation with initial data of Brownian type, Comm. Math. Phys.148 (1992) 623-641. Zbl0755.60104MR1181072
  20. [20] Y. Sinai, Statistics of shocks in solutions of inviscid Burgers equation, Comm. Math. Phys.148 (1992) 601-621. Zbl0755.60105MR1181071
  21. [21] W.A. Woyczynski, Burgers-KPZ Turbulence, Göttingen Lectures, Lectures Notes in Math., 1700, Springer, 1998. Zbl0919.60004MR1732301

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.