The logarithmic Sobolev constant of Kawasaki dynamics under a mixing condition revisited
N. Cancrini; F. Martinelli; C. Roberto
Annales de l'I.H.P. Probabilités et statistiques (2002)
- Volume: 38, Issue: 4, page 385-436
- ISSN: 0246-0203
Access Full Article
topHow to cite
topCancrini, N., Martinelli, F., and Roberto, C.. "The logarithmic Sobolev constant of Kawasaki dynamics under a mixing condition revisited." Annales de l'I.H.P. Probabilités et statistiques 38.4 (2002): 385-436. <http://eudml.org/doc/77720>.
@article{Cancrini2002,
author = {Cancrini, N., Martinelli, F., Roberto, C.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {4},
pages = {385-436},
publisher = {Elsevier},
title = {The logarithmic Sobolev constant of Kawasaki dynamics under a mixing condition revisited},
url = {http://eudml.org/doc/77720},
volume = {38},
year = {2002},
}
TY - JOUR
AU - Cancrini, N.
AU - Martinelli, F.
AU - Roberto, C.
TI - The logarithmic Sobolev constant of Kawasaki dynamics under a mixing condition revisited
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2002
PB - Elsevier
VL - 38
IS - 4
SP - 385
EP - 436
LA - eng
UR - http://eudml.org/doc/77720
ER -
References
top- [1] C. Albanese, A Goldstone mode in the Kawasaki–Ising model, J. Stat. Phys.77 (1/2) (1994) 77-87. Zbl0837.60094
- [2] C. Ané et al., Sur les inégalités de Sobolev logarithmiques, Panoramas et Synthèses10 (2001), S.M.F.
- [3] Bertini L., Cancrini N., Cesi F., The spectral gap for a Glauber-type dynamics in a continuous gas, Preprint n. 00-249 on http://rene.ma.utexas.edu/mp_arc. Zbl0994.82054
- [4] L. Bertini, E.N.M. Cirillo, E. Olivieri, Renormalization-group transformations under strong mixing conditions: Gibbsianness and convergence of renormalized interactions, J. Stat. Phys.97 (1999) 831-915. Zbl0958.82017MR1734386
- [5] L. Bertini, B. Zegarlinski, Coercive inequalities for Gibbs measures, J. Funct. Anal.162 (1999) 257-289. Zbl0932.60061MR1682059
- [6] L. Bertini, B. Zegarlinski, Coercive inequalities for Kawasaki dynamics. The product case, Markov Proc. Related Fields5 (1999) 125-162. Zbl0934.60096MR1762171
- [7] N. Cancrini, F. Cesi, F. Martinelli, Kawasaki dynamics at low temperature, J. Stat. Phys.95 (1/2) (1999) 219-275. Zbl0941.60092MR1705586
- [8] F. Cesi, Quasi-factorization of the entropy and logarithmic Sobolev inequalities for Gibbs random fields, Probab. Theory Related Fields (2001), To appear. Zbl1086.82002MR1853483
- [9] N. Cancrini, F. Martinelli, Comparison of finite volume canonical and grand canonical Gibbs measures under a mixing condition, Markov Proc. Related Fields6 (2000) 1-49. Zbl1005.82017MR1758982
- [10] N. Cancrini, F. Martinelli, On the spectral gap of Kawasaki dynamics under a mixing condition revisited, J. Math. Phys.41 (2000) 1391-1423. Zbl0977.82031MR1757965
- [11] N. Cancrini, F. Martinelli, Diffusive scaling of the spectral gap for the dilute Ising lattice gas under the percolation threshold, Probab. Theory Related Fields (2001), To appear. Zbl1086.82018MR1853481
- [12] P. Diaconis, L. Saloff-Coste, Logarithmic Sobolev inequality for finite Markov chains, Ann. Appl. Probab.6 (3) (1996) 695-750. Zbl0867.60043MR1410112
- [13] H.O. Georgii, Gibbs Measures and Phase Transitions, De Gruyter Series in Mathematics, 9, Walter de Gruyter, Berlin, 1988. Zbl0657.60122MR956646
- [14] S.T. Lu, H.-T. Yau, Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Comm. Math. Phys.156 (1993) 399-433. Zbl0779.60078MR1233852
- [15] T.-Y.T. Lee, H.-T. Yau, Logarithmic Sobolev inequality for some models of random walks, Ann. Probab.26 (4) (1998) 1855-1873. Zbl0943.60062MR1675008
- [16] F. Martinelli, Lectures on Glauber dynamics for discrete spin models, Proceedings of the Saint Flour Summer School in Probability Theory, Lecture Notes in Math., 1717, 1997. Zbl1051.82514MR1746301
- [17] L. Miclo, An example of application of discrete Hardy's inequalities, Markov Process. Related Fields5 (1999) 319-330. Zbl0942.60081MR1710983
- [18] S.R.S. Varadhan, H.-T. Yau, Diffusive limit of lattice gas with mixing conditions, Asian J. Math.1 (4) (1997) 623-678. Zbl0947.60089MR1621569
- [19] H.-T. Yau, Logarithmic Sobolev inequality for lattice gases with mixing conditions, Comm. Math. Phys.181 (1996) 367-408. Zbl0864.60079MR1414837
- [20] H.-T. Yau, Logarithmic Sobolev inequality for generalized simple exclusion processes, Probab. Theory Related Fields109 (4) (1997) 507-538. Zbl0903.60087MR1483598
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.