The logarithmic Sobolev constant of Kawasaki dynamics under a mixing condition revisited

N. Cancrini; F. Martinelli; C. Roberto

Annales de l'I.H.P. Probabilités et statistiques (2002)

  • Volume: 38, Issue: 4, page 385-436
  • ISSN: 0246-0203

How to cite

top

Cancrini, N., Martinelli, F., and Roberto, C.. "The logarithmic Sobolev constant of Kawasaki dynamics under a mixing condition revisited." Annales de l'I.H.P. Probabilités et statistiques 38.4 (2002): 385-436. <http://eudml.org/doc/77720>.

@article{Cancrini2002,
author = {Cancrini, N., Martinelli, F., Roberto, C.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {4},
pages = {385-436},
publisher = {Elsevier},
title = {The logarithmic Sobolev constant of Kawasaki dynamics under a mixing condition revisited},
url = {http://eudml.org/doc/77720},
volume = {38},
year = {2002},
}

TY - JOUR
AU - Cancrini, N.
AU - Martinelli, F.
AU - Roberto, C.
TI - The logarithmic Sobolev constant of Kawasaki dynamics under a mixing condition revisited
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2002
PB - Elsevier
VL - 38
IS - 4
SP - 385
EP - 436
LA - eng
UR - http://eudml.org/doc/77720
ER -

References

top
  1. [1] C. Albanese, A Goldstone mode in the Kawasaki–Ising model, J. Stat. Phys.77 (1/2) (1994) 77-87. Zbl0837.60094
  2. [2] C. Ané et al., Sur les inégalités de Sobolev logarithmiques, Panoramas et Synthèses10 (2001), S.M.F. 
  3. [3] Bertini L., Cancrini N., Cesi F., The spectral gap for a Glauber-type dynamics in a continuous gas, Preprint n. 00-249 on http://rene.ma.utexas.edu/mp_arc. Zbl0994.82054
  4. [4] L. Bertini, E.N.M. Cirillo, E. Olivieri, Renormalization-group transformations under strong mixing conditions: Gibbsianness and convergence of renormalized interactions, J. Stat. Phys.97 (1999) 831-915. Zbl0958.82017MR1734386
  5. [5] L. Bertini, B. Zegarlinski, Coercive inequalities for Gibbs measures, J. Funct. Anal.162 (1999) 257-289. Zbl0932.60061MR1682059
  6. [6] L. Bertini, B. Zegarlinski, Coercive inequalities for Kawasaki dynamics. The product case, Markov Proc. Related Fields5 (1999) 125-162. Zbl0934.60096MR1762171
  7. [7] N. Cancrini, F. Cesi, F. Martinelli, Kawasaki dynamics at low temperature, J. Stat. Phys.95 (1/2) (1999) 219-275. Zbl0941.60092MR1705586
  8. [8] F. Cesi, Quasi-factorization of the entropy and logarithmic Sobolev inequalities for Gibbs random fields, Probab. Theory Related Fields (2001), To appear. Zbl1086.82002MR1853483
  9. [9] N. Cancrini, F. Martinelli, Comparison of finite volume canonical and grand canonical Gibbs measures under a mixing condition, Markov Proc. Related Fields6 (2000) 1-49. Zbl1005.82017MR1758982
  10. [10] N. Cancrini, F. Martinelli, On the spectral gap of Kawasaki dynamics under a mixing condition revisited, J. Math. Phys.41 (2000) 1391-1423. Zbl0977.82031MR1757965
  11. [11] N. Cancrini, F. Martinelli, Diffusive scaling of the spectral gap for the dilute Ising lattice gas under the percolation threshold, Probab. Theory Related Fields (2001), To appear. Zbl1086.82018MR1853481
  12. [12] P. Diaconis, L. Saloff-Coste, Logarithmic Sobolev inequality for finite Markov chains, Ann. Appl. Probab.6 (3) (1996) 695-750. Zbl0867.60043MR1410112
  13. [13] H.O. Georgii, Gibbs Measures and Phase Transitions, De Gruyter Series in Mathematics, 9, Walter de Gruyter, Berlin, 1988. Zbl0657.60122MR956646
  14. [14] S.T. Lu, H.-T. Yau, Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Comm. Math. Phys.156 (1993) 399-433. Zbl0779.60078MR1233852
  15. [15] T.-Y.T. Lee, H.-T. Yau, Logarithmic Sobolev inequality for some models of random walks, Ann. Probab.26 (4) (1998) 1855-1873. Zbl0943.60062MR1675008
  16. [16] F. Martinelli, Lectures on Glauber dynamics for discrete spin models, Proceedings of the Saint Flour Summer School in Probability Theory, Lecture Notes in Math., 1717, 1997. Zbl1051.82514MR1746301
  17. [17] L. Miclo, An example of application of discrete Hardy's inequalities, Markov Process. Related Fields5 (1999) 319-330. Zbl0942.60081MR1710983
  18. [18] S.R.S. Varadhan, H.-T. Yau, Diffusive limit of lattice gas with mixing conditions, Asian J. Math.1 (4) (1997) 623-678. Zbl0947.60089MR1621569
  19. [19] H.-T. Yau, Logarithmic Sobolev inequality for lattice gases with mixing conditions, Comm. Math. Phys.181 (1996) 367-408. Zbl0864.60079MR1414837
  20. [20] H.-T. Yau, Logarithmic Sobolev inequality for generalized simple exclusion processes, Probab. Theory Related Fields109 (4) (1997) 507-538. Zbl0903.60087MR1483598

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.