LAN property for ergodic diffusions with discrete observations
Annales de l'I.H.P. Probabilités et statistiques (2002)
- Volume: 38, Issue: 5, page 711-737
- ISSN: 0246-0203
Access Full Article
topHow to cite
topGobet, Emmanuel. "LAN property for ergodic diffusions with discrete observations." Annales de l'I.H.P. Probabilités et statistiques 38.5 (2002): 711-737. <http://eudml.org/doc/77730>.
@article{Gobet2002,
author = {Gobet, Emmanuel},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {ergodic diffusion process; LAN property; log-likelihood ratio; Malliavin calculus; parametric estimation},
language = {eng},
number = {5},
pages = {711-737},
publisher = {Elsevier},
title = {LAN property for ergodic diffusions with discrete observations},
url = {http://eudml.org/doc/77730},
volume = {38},
year = {2002},
}
TY - JOUR
AU - Gobet, Emmanuel
TI - LAN property for ergodic diffusions with discrete observations
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2002
PB - Elsevier
VL - 38
IS - 5
SP - 711
EP - 737
LA - eng
KW - ergodic diffusion process; LAN property; log-likelihood ratio; Malliavin calculus; parametric estimation
UR - http://eudml.org/doc/77730
ER -
References
top- [1] D.G. Aronson, Bounds for the fundamental solution of a parabolic equation, Bull. Amer. Math. Soc.73 (1967) 890-903. Zbl0153.42002MR217444
- [2] D. Dacunha-Castelle, D. Florens-Zmirou, Estimation of the coefficient of a diffusion from discrete observations, Stochastics19 (1986) 263-284. Zbl0626.62085MR872464
- [3] G. Donhal, On estimating the diffusion coefficient, J. Appl. Probab.24 (1987) 105-114. Zbl0615.62109MR876173
- [4] D. Florens-Zmirou, Approximate discrete time schemes for statistics of diffusion processes, Statistics20 (1989) 547-557. Zbl0704.62072MR1047222
- [5] A. Friedman, Stochastic Differential Equations and Applications, Vol. 1, Academic Press, New York, 1975. Zbl0323.60056MR494490
- [6] V. Genon-Catalot, Maximum contrast estimation for diffusion processes from discrete observations, Statistics21 (1990) 99-116. Zbl0721.62082MR1056065
- [7] V. Genon-Catalot, J. Jacod, On the estimation of the diffusion coefficient for multidimensional diffusion processes, Ann. Inst. H. Poincaré (Probab. Statist.)29 (1993) 119-151. Zbl0770.62070MR1204521
- [8] V. Genon-Catalot, J. Jacod, Estimation of the diffusion coefficient for diffusion processes: random sampling, Scandinavian J. Statist.21 (1994) 193-221. Zbl0804.62078MR1292636
- [9] E. Gobet, Local asymptotic mixed normality property for elliptic diffusion, Bernouilli7 (6) (2001) 899-912. Zbl1003.60057MR1873834
- [10] J. Hajek, Local asymptotic minimax admissibility in estimation, in: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley and Los Angeles, University of California Press, 1971, pp. 175-194. Zbl0281.62010MR400513
- [11] R.Z. Has'minskii, Stochastic Stability of Differential Equations, Sijthoff & Noordhoff, 1980. MR600653
- [12] R. Höpfner, J. Jacod, L. Ladelli, Local asymptotic normality and mixed normality for Markov statistical models, Probab. Theory Related Fields86 (1990) 105-129. Zbl0685.60016MR1061951
- [13] J. Jacod, Private communication.
- [14] J. Jacod, A.N. Shiryaev, Limit Theorems for Stochastic Processes, Springer, Berlin, 1987. Zbl0635.60021MR959133
- [15] I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, Springer, 1998. Zbl0638.60065MR917065
- [16] M. Kessler, Estimation of an ergodic diffusion from discrete observations, Scandinavian J. Statist.24 (1997) 211-229. Zbl0879.60058MR1455868
- [17] H. Kunita, Stochastic differential equations and stochastic flows of diffeomorphisms, in: Ecole d'Eté de Probabilités de St-Flour XII, 1982, Lecture Notes in Math., 1097, Springer, 1984, pp. 144-305. Zbl0554.60066MR876080
- [18] L. Le Cam, Limits of experiments, in: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley and Los Angeles, University of California Press, 1971, pp. 245-261. Zbl0271.62004
- [19] L. Le Cam, G.L. Yang, Asymptotics in Statistics, Springer, 1990. Zbl0719.62003MR1066869
- [20] T.J. Lyons, W.A. Zheng, On conditional diffusion processes, Proc. Royal Soc. Edinburgh115 A (1990) 243-255. Zbl0715.60097MR1069520
- [21] D. Nualart, Malliavin Calculus and Related Topics, Springer, 1995. Zbl0837.60050MR1344217
- [22] B.L.S. Prakasa Rao, Asymptotic theory for non-linear least square estimator for diffusion processes, Math. Operationsforsch. Statist. Ser. Stat.14 (1983) 195-209. Zbl0532.62060MR704787
- [23] B.L.S. Prakasa Rao, Statistical Inference for Diffusion Type Processes, Kendall's Library of Statistics, 8, Edward Arnold, London, Oxford University Press, New York, 1999. Zbl0952.62077MR1717690
- [24] N. Yoshida, Estimation for diffusion processes from discrete observations, J. Multivariate Anal.41 (1992) 220-242. Zbl0811.62083MR1172898
- [25] N. Yoshida, Asymptotic expansions of maximum likelihood estimators for small diffusions via the theory of Malliavin–Watanabe, Probab. Theory Related Fields92 (1992) 275-311. Zbl0767.60035
- [26] N. Yoshida, Asymptotic expansions for perturbed systems on Wiener space, maximum likelihood estimators, J. Multivariate Anal.57 (1996) 1-36. Zbl0845.62054MR1392575
Citations in EuDML Documents
top- Masayuki Uchida, Nakahiro Yoshida, Estimation for misspecified ergodic diffusion processes from discrete observations
- Masayuki Uchida, Nakahiro Yoshida, Estimation for misspecified ergodic diffusion processes from discrete observations
- Arnaud Gloter, Emmanuel Gobet, LAMN property for hidden processes : the case of integrated diffusions
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.