Estimation for misspecified ergodic diffusion processes from discrete observations
Masayuki Uchida; Nakahiro Yoshida
ESAIM: Probability and Statistics (2011)
- Volume: 15, page 270-290
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] B.M. Bibby and M. Sørensen, Martingale estimating functions for discretely observed diffusion processes. Bernoulli1 (1995) 17–39. Zbl0830.62075MR1354454
- [2] D. Florens-Zmirou, Approximate discrete time schemes for statistics of diffusion processes. Statistics20 (1989) 547–557. Zbl0704.62072MR1047222
- [3] V. Genon-Catalot and J. Jacod, On the estimation of the diffusion coefficient for multidimensional diffusion processes. Ann. Inst. Henri Poincaré Probab. Statist. 29 (1993) 119–151. Zbl0770.62070MR1204521
- [4] E. Gobet, LAN property for ergodic diffusions with discrete observations. Ann. Inst. H. Poincaré Probab. Statist. 38 (2002) 711–737. Zbl1018.60076MR1931584
- [5] P. Hall and C. Heyde, Martingale limit theory and its applications. Academic Press, New York (1980). Zbl0462.60045MR624435
- [6] I.A. Ibragimov and R.Z. Has'minskii, Statistical estimation. Springer Verlag, New York (1981). MR620321
- [7] M. Kessler, Estimation of an ergodic diffusion from discrete observations. Scand. J. Statist. 24 (1997) 211–229. Zbl0879.60058MR1455868
- [8] S. Kusuoka and N. Yoshida, Malliavin calculus, geometric mixing, and expansion of diffusion functionals, Probab. Theory Relat. Fields 116 (2000) 457–484. Zbl0970.60061MR1757596
- [9] Yu.A. Kutoyants, Statistical inference for ergodic diffusion processes. Springer-Verlag, London (2004). Zbl1038.62073MR2144185
- [10] H. Masuda, Ergodicity and exponential β-mixing bound for multidimensional diffusions with jumps. Stochastic Processes Appl. 117 (2007) 35–56. Zbl1118.60070MR2287102
- [11] I.W. McKeague, Estimation for diffusion processes under misspecified models. J. Appl. Probab. 21 (1984) 511–520. Zbl0555.62067MR752016
- [12] S.P. Meyn and P.L. Tweedie, Stability of Markovian processes. III. Foster-Lyapunov criteria for continuous-time processes. Adv. in Appl. Probab. 25 (1993) 518–548. Zbl0781.60053MR1234295
- [13] E. Pardoux and A.Y. Veretennikov, On the Poisson equation and diffusion approximation 1. Ann. Prob. 29 (2001) 1061–1085. Zbl1029.60053MR1872736
- [14] B.L.S. Prakasa Rao, Asymptotic theory for nonlinear least squares estimator for diffusion processes. Math. Operationsforsch. Statist. Ser. Statist. 14 (1983) 195–209. Zbl0532.62060MR704787
- [15] B.L.S. Prakasa Rao, Statistical inference from sampled data for stochastic processes. Contemp. Math. 80 (1988) 249–284. Amer. Math. Soc., Providence, RI. Zbl0687.62069MR999016
- [16] M. Uchida and N. Yoshida, Information criteria in model selection for mixing processes. Statist. Infer. Stochast. Process. 4 (2001) 73–98. Zbl1092.62595MR1850590
- [17] N. Yoshida, Asymptotic behavior of M-estimator and related random field for diffusion process. Ann. Inst. Statist. Math. 42 (1990) 221–251. Zbl0723.62048MR1064786
- [18] N. Yoshida, Estimation for diffusion processes from discrete observation. J. Multivariate Anal. 41 (1992) 220–242. Zbl0811.62083MR1172898
- [19] N. Yoshida, Polynomial type large deviation inequalities and quasi-likelihood analysis for stochastic differential equations (to appear in Ann. Inst. Statist. Math.) (2005). MR2786943