Estimates of the rate of approximation in a de-poissonization lemma

Andrei Yu. Zaitsev

Annales de l'I.H.P. Probabilités et statistiques (2002)

  • Volume: 38, Issue: 6, page 1071-1086
  • ISSN: 0246-0203

How to cite

top

Zaitsev, Andrei Yu.. "Estimates of the rate of approximation in a de-poissonization lemma." Annales de l'I.H.P. Probabilités et statistiques 38.6 (2002): 1071-1086. <http://eudml.org/doc/77739>.

@article{Zaitsev2002,
author = {Zaitsev, Andrei Yu.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {strong approximation; Prokhorov distance; central limit theorem},
language = {eng},
number = {6},
pages = {1071-1086},
publisher = {Elsevier},
title = {Estimates of the rate of approximation in a de-poissonization lemma},
url = {http://eudml.org/doc/77739},
volume = {38},
year = {2002},
}

TY - JOUR
AU - Zaitsev, Andrei Yu.
TI - Estimates of the rate of approximation in a de-poissonization lemma
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2002
PB - Elsevier
VL - 38
IS - 6
SP - 1071
EP - 1086
LA - eng
KW - strong approximation; Prokhorov distance; central limit theorem
UR - http://eudml.org/doc/77739
ER -

References

top
  1. [1] J. Beirlant, D.M. Mason, On the asymptotic normality of Lp-norms of empirical functionals, Math. Methods Statist.4 (1995) 1-19. Zbl0831.62019MR1324687
  2. [2] I. Berkes, W. Philipp, Approximation theorems for independent and weakly dependent random vectors, Ann. Probab.7 (1979) 29-54. Zbl0392.60024MR515811
  3. [3] R.M. Dudley, Probability and Metrics, Lectures Notes Aarhus Univ., 1976. 
  4. [4] W. Feller, An Introduction to Probability Theory and its Applications, Vol. II, Wiley, New York, 1966. Zbl0138.10207MR210154
  5. [5] E. Giné, D.M. Mason, A.Yu. Zaitsev, The L1-norm density estimator process, Ann. Probab., 2001, Accepted for publication. Zbl1031.62026MR1964947
  6. [6] A.Yu. Zaitsev, Estimates of the Lévy–Prokhorov distance in the multivariate central limit theorem for random variables with finite exponential moments, Theor. Probab. Appl.31 (1986) 203-220. Zbl0659.60042
  7. [7] A.Yu. Zaitsev, Estimates for quantiles of smooth conditional distributions and multidimensional invariance principle, Siberian Math. J.37 (1996) 807-831, (in Russian). Zbl0881.60034MR1643370
  8. [8] A.Yu. Zaitsev, Multidimensional version of the results of Komlós, Major and Tusnády for vectors with finite exponential moments, ESAIM: Probability and Statistics2 (1998) 41-108. Zbl0897.60033MR1616527
  9. [9] A.Yu. Zaitsev, Multidimensional version of the results of Sakhanenko in the invariance principle for vectors with finite exponential moments. I; II; III, Theor. Probab. Appl.45 (2000) 718-738, 46 (2001) 535–561; 744–769. Zbl0994.60029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.