Multidimensional version of the results of Komlós, Major and Tusnády for vectors with finite exponential moments
ESAIM: Probability and Statistics (1998)
- Volume: 2, page 41-108
- ISSN: 1292-8100
Access Full Article
topHow to cite
topZaitsev, A. Yu.. "Multidimensional version of the results of Komlós, Major and Tusnády for vectors with finite exponential moments." ESAIM: Probability and Statistics 2 (1998): 41-108. <http://eudml.org/doc/104251>.
@article{Zaitsev1998,
author = {Zaitsev, A. Yu.},
journal = {ESAIM: Probability and Statistics},
keywords = {independent random vectors; rate of strong approximation},
language = {eng},
pages = {41-108},
publisher = {EDP Sciences},
title = {Multidimensional version of the results of Komlós, Major and Tusnády for vectors with finite exponential moments},
url = {http://eudml.org/doc/104251},
volume = {2},
year = {1998},
}
TY - JOUR
AU - Zaitsev, A. Yu.
TI - Multidimensional version of the results of Komlós, Major and Tusnády for vectors with finite exponential moments
JO - ESAIM: Probability and Statistics
PY - 1998
PB - EDP Sciences
VL - 2
SP - 41
EP - 108
LA - eng
KW - independent random vectors; rate of strong approximation
UR - http://eudml.org/doc/104251
ER -
References
top- BÁRTFAI, P. ( 1966), Die Bestiminung der zu einem wiederkehrenden Prozess gehörenden Verteilungfunktion aus den mit Fehlern behafteten Daten einer einzigen Realisation, Studia Sci. Math. Hungar. 1 161-168. Zbl0156.39102MR215377
- BERGER, E. ( 1982), Fast sichere Approximation von Partialsummen unabhängiger und stationärer ergodischer Folgen von Zufallsveetoren, Dissertation, Universität Göttingen.
- BERKES, I., PHILIPP, W. ( 1979), Approximation theorems for independent and weakly dependent random vectors, Ann. Probab. 7 29-54. Zbl0392.60024MR515811
- BOROVKOV, A. A. ( 1973), On the rate of convergence in the invariance principle, Theor. Probab. Appl. 18 207-225. Zbl0323.60031MR324738
- CSÖRGŐ, M., RÉVÉSZ, P. ( 1975), A new method to prove Strassen type laws of invariance principle. I; II, Z. Wahrscheinlichkeitstheor. verw. Geb. 31 255-259; 261-269. Zbl0283.60024MR375411
- CSÖRGŐ, M., RÉVÉSZ, P. ( 1981), Strong approximations in probability and statistics, Academic Press. Zbl0539.60029MR666546
- CSÖRGŐ, S., HALL, P. ( 1984), The Komlós-Major-Tusnády approximations and their applications, Austral J. Statist. 26 189-218. Zbl0557.60028MR766619
- DOOB, J. L. ( 1953), Stochastic processes, Wiley. Zbl0053.26802MR58896
- ElNMAHL, U. ( 1986), A refinement of the KMT-inequality for partial sumstrong approximation, Techn. Rep. Ser. Lab. Res. Statist. No. 88. Carleton University, University of Ottawa.
- ElNMAHL, U. ( 1987a), A useful estimate in the multidimensional invariance principle, Probab. Theor. Rel Fields 76 81-101. Zbl0608.60029MR899446
- ElNMAHL, U. ( 1987b), Strong invariance principles for partial sums of independent random vectors, Ann. Probab. 15 1419-1440. Zbl0637.60041MR905340
- ElNMAHL, U. ( 1989), Extensions of results of Komlós, Major and Tusnády to the multivariate case, J. Multivar. Anal. 28 20-68. Zbl0676.60038MR996984
- GÖTZE, F., ZAITSEV, A. YU. ( 1997), Multidimensional Hungarian construction for almost Gaussian smooth distributions, Preprint 97- 071 SFB 343, Universität Bielefeld. Zbl1019.60032
- KOMLÓS, J., MAJOR, P., TUSNÁDY, G. ( 1975; 1976), An approximation of partial sums of independent RV'-s and the sample DF. I; II, Z. Wahrscheinlichkeitstheor. verw. Geb. 32 111-131; 34 34-58. Zbl0308.60029MR375412
- MASSART, P. ( 1989), Strong approximation for multivariate empirical and related processes, via KMT construction, Ann. Probab. 17 266-291. Zbl0675.60026MR972785
- PHILIPP, W. ( 1979), Almost sure invariance principles for sums of B-valued random variables, Lect. Notes in Math. 709 171-193. Zbl0418.60013MR537701
- PROKHOROV, YU. V. ( 1956), Convergence of random processes and limit theorem of probability theory, Theor. Probab. Appl. 1 157-214. Zbl0075.29001
- ROSENBLATT, M. ( 1952), Remarks on a multivariate transformation, Ann. Math. Statist. 23 470-472. Zbl0047.13104MR49525
- SAKHANENKO, A. I. ( 1984), Rate of convergence in the invariance principles for variables with exponential moments that are not identically distributed, In: Trudy Inst. Mat. SO AN SSSR, Nauka, Novosibirsk, 3 4-49 (in Russian). Zbl0541.60024MR749757
- SAZONOV, V. V. ( 1981), Normal approximation - some recent advances, Lect. Notes in Math. 879. Zbl0462.60006MR643968
- SHAO, QI-MAN ( 1995), Strong approximation theorems for independent random variables and their applications, J. Multivar. Anal. 52 107-130. Zbl0817.60027MR1325373
- SKOROKHOD, A. V. ( 1961), Studies in the theory of random processes, Univ. Kiev Press (in Russian, Engl. transl. ( 1965), Addison-Wesley). Zbl0146.37701MR185620
- STRASSEN, V. ( 1964), An invariance principle for the law of iterated logarithm, Z. Wahrscheinlichkeitstheor. verw. Geb. 3 211-226. Zbl0132.12903MR175194
- YURINSKII, V. V. ( 1978), On the error of the Gaussian approximation to the probability of a ball, Unpublished manuscript.
- ZAITSEV, A. YU. ( 1986), Estimates of the Lévy-Prokhorov distance in the multivariate central limit theorem for random variables with finite exponential moments, Theor. Probab. Appl. 31 203-220. Zbl0659.60042
- ZAITSEV, A. YU. ( 1987), On the Gaussian approximation of convolutions under multi-dimensional analogues of S. N. Bernstein inequality conditions, Probab. Theor. Rel. Fields 74 535-566. Zbl0612.60031MR876255
- ZAITSEV, A. YU. ( 1988), On the connection between two classes of probability distributions, In: Rings and modulus. Limit theorems of probability theory. Vol. 2, Leningrad University Press, 153-158 (in Russian). MR974144
- ZAITSEV, A. YU. ( 1995a), Multidimensional version of the Hungarian construction, In : Vtoraya Vserossiiskaya shkola-kollokvium po stochasticheskim metodam. Ioshkar-Ola, 1995. Tezisy dokladov, TVP, Moskva, 54-55 (in Russian).
- ZAITSEV, A. YU. ( 1995b), Multidimensional version of the results of Komlós, Major and Tusnády for vectors with finite exponential moments, Preprint 95 - 055 SFB 343, Universität Bielefeld.
- ZAITSEV, A. YU. ( 1996a), An improvement of U. Einmahl estimate in the multidimensional invariance principle, In: Probability Theory and Mathematical Statistics. Proceedings of the Euler Institute Seminars Deducated to the Memory of Kolmogorov. I. A. Ibragimov and A. Yu. Zaitsev eds. Gordon and Breach, 109-116. Zbl0873.60020MR1661697
- ZAITSEV, A. YU. ( 1996b), Estimates for quantiles of smooth conditional distributions and multidimensional invariance principle, Siberian Math. J. 37 807-831 (in Russian). Zbl0881.60034MR1643370
- ZAITSEV, A. YU. ( 1997), Multidimensional variant of the Komlós, Major and Tusnády results for vectors with finite exponent ial moments, Dokl. Math. 56 935-937. Zbl0971.60033
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.