A different construction of gaussian fields from Markov chains : Dirichlet covariances
Persi Diaconis; Steven N. Evans
Annales de l'I.H.P. Probabilités et statistiques (2002)
- Volume: 38, Issue: 6, page 863-878
- ISSN: 0246-0203
Access Full Article
topHow to cite
topDiaconis, Persi, and Evans, Steven N.. "A different construction of gaussian fields from Markov chains : Dirichlet covariances." Annales de l'I.H.P. Probabilités et statistiques 38.6 (2002): 863-878. <http://eudml.org/doc/77745>.
@article{Diaconis2002,
author = {Diaconis, Persi, Evans, Steven N.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Gaussian random field; Markov chains; negative correlation; Dirichlet form; potential theory},
language = {eng},
number = {6},
pages = {863-878},
publisher = {Elsevier},
title = {A different construction of gaussian fields from Markov chains : Dirichlet covariances},
url = {http://eudml.org/doc/77745},
volume = {38},
year = {2002},
}
TY - JOUR
AU - Diaconis, Persi
AU - Evans, Steven N.
TI - A different construction of gaussian fields from Markov chains : Dirichlet covariances
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2002
PB - Elsevier
VL - 38
IS - 6
SP - 863
EP - 878
LA - eng
KW - Gaussian random field; Markov chains; negative correlation; Dirichlet form; potential theory
UR - http://eudml.org/doc/77745
ER -
References
top- [1] J. Besag, Spatial interaction and the statistical analysis of lattice systems, J. Roy. Statist. Soc. Ser. B36 (1974) 192-236, With discussion by D.R. Cox, A.G. Hawkes, P. Clifford, P. Whittle, K. Ord, R. Mead, J.M. Hammersley, and M.S. Bartlett and with a reply by the author. Zbl0327.60067MR373208
- [2] J. Besag, P. Green, D. Higdon, K. Mengersen, Bayesian computation and stochastic systems, Statist. Sci.10 (1) (1995) 3-66, With comments and a reply by the authors. Zbl0955.62552MR1349818
- [3] J. Besag, P.J. Green, Spatial statistics and Bayesian computation, J. Roy. Statist. Soc. Ser. B55 (1) (1993) 25-37. Zbl0800.62572MR1210422
- [4] J. Besag, D. Higdon, Bayesian analysis of agricultural field experiments, J. Roy. Statist. Soc. Ser. B Stat. Methodol.61 (4) (1999) 691-746, With discussion and a reply by the authors. Zbl0951.62091MR1722238
- [5] J. Besag, C. Kooperberg, On conditional and intrinsic autoregressions, Biometrika82 (4) (1995) 733-746. Zbl0899.62123MR1380811
- [6] A. Beurling, J. Deny, Espaces de Dirichlet. I. Le cas élémentaire, Acta Math.99 (1958) 203-224. Zbl0089.08106MR98924
- [7] R.N. Bhattacharya, On the functional central limit theorem and the law of the iterated logarithm for Markov processes, Z. Wahrsch. Verw. Gebiete60 (2) (1982) 185-201. Zbl0468.60034MR663900
- [8] E. Bolthausen, Random walk representations and entropic repulsion for gradient models. Preprint, 2001. MR1831411
- [9] K. Borre, Error propagation in absolute geodetic networks – a continuous approach, in: Optimization of Design and Computation of Control Networks (Proc. Internat. Sympos., Sopron, 1977), Akad. Kiadó, Budapest, 1979, pp. 459-472.
- [10] K. Borre, Plane Networks and Their Applications, Birkhäuser Boston, Boston, MA, 2001. Zbl0966.65123MR1802805
- [11] K. Borre, P. Meissl, Strength analysis of leveling-type networks. An application of random walk theory, Geodaet. Inst. Medd.50 (1974) 80. MR475698
- [12] D. Brydges, J. Fröhlich, T. Spencer, The random walk representation of classical spin systems and correlation inequalities, Comm. Math. Phys.83 (1) (1982) 123-150. MR648362
- [13] P. Diaconis, S.N. Evans, Linear functionals of eigenvalues of random matrices, Trans. Amer. Math. Soc.353 (2001) 2615-2633. Zbl1008.15013MR1828463
- [14] P. Diaconis, D. Freedman, On the statistics of vision: the Julesz conjecture, J. Math. Psych.24 (2) (1981) 112-138. Zbl0494.92025MR640207
- [15] P. Diaconis, M. Shahshahani, On the eigenvalues of random matrices, J. Appl. Probab.31A (1994) 49-62. Zbl0807.15015MR1274717
- [16] M. Dozzi, Two-parameter harnesses and the Wiener process, Z. Wahrsch. Verw. Gebiete56 (4) (1981) 507-514. Zbl0456.60047MR621661
- [17] M. Dozzi, Stochastic Processes with a Multidimensional Parameter, Longman Scientific & Technical, Harlow, 1989. Zbl0663.60039MR991563
- [18] E.B. Dynkin, Markov processes and random fields, Bull. Amer. Math. Soc. (N.S.)3 (3) (1980) 975-999. Zbl0519.60046MR585179
- [19] E.B. Dynkin, Markov processes as a tool in field theory, J. Funct. Anal.50 (2) (1983) 167-187. Zbl0522.60078MR693227
- [20] E.B. Dynkin, Gaussian and non-Gaussian random fields associated with Markov processes, J. Funct. Anal.55 (3) (1984) 344-376. Zbl0533.60061MR734803
- [21] E.B. Dynkin, Polynomials of the occupation field and related random fields, J. Funct. Anal.58 (1) (1984) 20-52. Zbl0552.60075MR756768
- [22] N. Eisenbaum, Une version sans conditionnement du théorème d'isomorphisms de Dynkin, in: Séminaire de Probabilités, XXIX, Lecture Notes in Math., 1613, Springer, Berlin, 1995, pp. 266-289. Zbl0849.60075MR1459468
- [23] M. Fukushima, Y. Oshima, M. Takeda, Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, Berlin, 1994. Zbl0838.31001MR1303354
- [24] J. Goodman, A. Sokal, Multigrid Monte–Carlo method: conceptual foundations, Phys. Rev. D40 (1989) 2035-2071.
- [25] L. Gross, Hypercontractivity over complex manifolds, Acta Math.182 (2) (1999) 159-206. Zbl0983.47026MR1710181
- [26] J.M. Hammersley, Harnesses, in: Proc. Fifth Berkeley Sympos. Mathematical Statistics and Probability (Berkeley, Calif., 1965/66), Vol. III: Physical Sciences, Univ. California Press, Berkeley, CA, 1967, pp. 89-117. MR224144
- [27] K. Johansson, On random matrices from the compact classical groups, Ann. of Math. (2)145 (1997) 519-545. Zbl0883.60010MR1454702
- [28] J.F.C. Kingman, Random variables with unsymmetrical linear regressions, Math. Proc. Cambridge Philos. Soc.98 (2) (1985) 355-365. Zbl0574.60014MR795900
- [29] J.F.C. Kingman, The construction of infinite collections of random variables with linear regressions, Adv. Appl. Probab. (suppl.) (1986) 73-85. Zbl0616.60005MR868509
- [30] M.B. Marcus, J. Rosen, Moduli of continuity of local times of strongly symmetric Markov processes via Gaussian processes, J. Theoret. Probab.5 (4) (1992) 791-825. Zbl0761.60035MR1182681
- [31] M.B. Marcus, J. Rosen, Moment generating functions for local times of symmetric Markov processes and random walks, in: Probability in Banach Spaces, 8 (Brunswick, ME, 1991), Birkhäuser Boston, Boston, MA, 1992, pp. 364-376. Zbl0788.60092MR1227631
- [32] M.B. Marcus, J. Rosen, p-variation of the local times of symmetric stable processes and of Gaussian processes with stationary increments, Ann. Probab.20 (4) (1992) 1685-1713. Zbl0762.60069MR1188038
- [33] M.B. Marcus, J. Rosen, Sample path properties of the local times of strongly symmetric Markov processes via Gaussian processes, Ann. Probab.20 (4) (1992) 1603-1684. Zbl0762.60068MR1188037
- [34] M.B. Marcus, J. Rosen, φ-variation of the local times of symmetric Lévy processes and stationary Gaussian processes, in: Seminar on Stochastic Processes, 1992 (Seattle, WA, 1992), Birkhäuser Boston, Boston, MA, 1993, pp. 209-220. Zbl0793.60043
- [35] M.L. Mehta, Random Matrices, Academic Press, Boston, MA, 1991. Zbl0780.60014MR1083764
- [36] H.-J. Schmeisser, H. Triebel, Topics in Fourier Analysis and Function Spaces, Wiley, Chichester, 1987. Zbl0661.46025MR891189
- [37] P. Sheppard, On the Ray-Knight Markov property of local times, J. London Math. Soc. (2)31 (2) (1985) 377-384. Zbl0535.60070MR809960
- [38] K. Symanzik, Euclidean quantum field theory, in: Jost R. (Ed.), Local Quantum Theory, Academic, New York, 1969.
- [39] D. Williams, Some basic theorems on harnesses, in: Stochastic Analysis (a tribute to the memory of Rollo Davidson), Wiley, London, 1973, pp. 349-363. MR362565
- [40] D. Ylvisaker, Prediction and design, Ann. Statist.15 (1) (1987) 1-19. Zbl0646.62080MR885721
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.