A functional hungarian construction for sums of independent random variables

Ion Grama; Michael Nussbaum

Annales de l'I.H.P. Probabilités et statistiques (2002)

  • Volume: 38, Issue: 6, page 923-957
  • ISSN: 0246-0203

How to cite

top

Grama, Ion, and Nussbaum, Michael. "A functional hungarian construction for sums of independent random variables." Annales de l'I.H.P. Probabilités et statistiques 38.6 (2002): 923-957. <http://eudml.org/doc/77749>.

@article{Grama2002,
author = {Grama, Ion, Nussbaum, Michael},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {partial sum process; Komlos-Major-Tusnady inequality; non-identically distributed variables; Hölder class; asymptotic equivalence of statistical experiments},
language = {eng},
number = {6},
pages = {923-957},
publisher = {Elsevier},
title = {A functional hungarian construction for sums of independent random variables},
url = {http://eudml.org/doc/77749},
volume = {38},
year = {2002},
}

TY - JOUR
AU - Grama, Ion
AU - Nussbaum, Michael
TI - A functional hungarian construction for sums of independent random variables
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2002
PB - Elsevier
VL - 38
IS - 6
SP - 923
EP - 957
LA - eng
KW - partial sum process; Komlos-Major-Tusnady inequality; non-identically distributed variables; Hölder class; asymptotic equivalence of statistical experiments
UR - http://eudml.org/doc/77749
ER -

References

top
  1. [1] J. Bretagnolle, P. Massart, Hungarian constructions from the nonasymptotic viewpoint, Ann. Probab.17 (1989) 239-256. Zbl0667.60042MR972783
  2. [2] M. Csörgo&#x030B;, P. Révész, Strong Approximations in Probability and Statistics, Academic Press, New York, 1981. Zbl0539.60029MR666546
  3. [3] R. Dudley, Real Analysis and Probability, Wadsworth and Brooks/Cole, Pacific Grove, CA, 1989. Zbl0686.60001MR982264
  4. [4] U. Einmahl, Extensions on results of Komlós, Major and Tusnády to the multivariate case, J. Multivariate Anal.28 (1989) 20-68. Zbl0676.60038MR996984
  5. [5] U. Einmahl, D.M. Mason, Gaussian approximation of local empirical processes indexed by functions, Probab. Theory Related Fields107 (1997) 283-311. Zbl0878.60025MR1440134
  6. [6] I. Grama, M. Nussbaum, Asymptotic equivalence for nonparametric generalized linear models, Probab. Theory Related Fields111 (1998) 167-214. Zbl0953.62039MR1633574
  7. [7] B.S. Kashin, A.A. Saakyan, Orthogonal Series, American Mathematical Society, Providence, RI, 1989. Zbl0668.42011MR1007141
  8. [8] V.I. Koltchinskii, Komlós–Major–Tusnády approximation for the general empirical process and Haar expansions of classes of functions, J. Theoret. Probab.7 (1994) 73-118. Zbl0810.60002
  9. [9] J. Komlós, P. Major, G. Tusnády, An approximation of partial sums of independent rv's and the sample df. I, Z. Wahrsch. verw. Gebiete32 (1975) 111-131. Zbl0308.60029MR375412
  10. [10] J. Komlós, P. Major, G. Tusnády, An approximation of partial sums of independent rv's and the sample df. II, Z. Wahrsch. verw. Gebiete34 (1976) 33-58. Zbl0307.60045MR402883
  11. [11] L. Le Cam, Asymptotic Methods in Statistical Decision Theory, Springer-Verlag, New York, 1986. Zbl0605.62002MR856411
  12. [12] L. Le Cam, G.L. Yang, Asymptotics in Statistics: Some Basic Concepts, Springer-Verlag, New York, 2000. Zbl0719.62003MR1784901
  13. [13] P. Massart, Strong approximation for multivariate empirical and related processes, via KMT constructions, Ann. Probab.17 (1989) 266-291. Zbl0675.60026MR972785
  14. [14] M. Nussbaum, Asymptotic equivalence of density estimation and white noise, Preprint No. 35, Institute of Applied Analysis and Stochastics, Berlin, 1993. MR747259
  15. [15] M. Nussbaum, Asymptotic equivalence of density estimation and Gaussian white noise, Ann. Statist.24 (1996) 2399-2430. Zbl0867.62035MR1425959
  16. [16] E. Rio, Strong approximation for set-indexed partial sum processes, via K.M.T. constructions I, Ann. Probab.21 (1993) 759-790. Zbl0776.60045MR1217564
  17. [17] E. Rio, Strong approximation for set-indexed partial sum processes, via K.M.T. constructions II, Ann. Probab.21 (1993) 1706-1727. Zbl0779.60030MR1235436
  18. [18] E. Rio, Local invariance principles and their applications to density estimation, Probab. Theory Related Fields98 (1994) 21-45. Zbl0794.60019MR1254823
  19. [19] A. Sakhanenko, The rate of convergence in the invariance principle for non-identically distributed variables with exponential moments, Limit theorems for sums of random variables. Trudy Inst. Matem., Sibirsk. Otdel. AN SSSR.3 (1984) 3-49, (in Russian). Zbl0541.60024MR749757
  20. [20] A. van der Vaart, J. Wellner, Weak Convergence and Empirical Processes, Springer-Verlag, New York, 1996. Zbl0862.60002MR1385671
  21. [21] A. Zaitsev, On the Gaussian approximation of convolutions under multidimensional analogues of S.N. Bernstein's inequality conditions, Probab. Theory Related Fields74 (1987) 534-566. Zbl0612.60031MR876255
  22. [22] A. Zaitsev, Estimates for quantiles of smooth conditional distributions and multidimensional invariance principle, Siberian Math. J.37 (1996) 807-831. Zbl0881.60034MR1643370
  23. [23] A. Zaitsev, Multidimensional version of the results of Komlós, Major and Tusnády for vectors with finite exponential moments, ESAIM: P & S2 (1998) 41-108. Zbl0897.60033MR1616527
  24. [24] A. Zaitsev, Multidimensional version of a result of Sakhanenko in the invariance principle for vectors with finite exponential moments. I, Theory Probab. Appl.45 (2001) 624-641. Zbl0994.60029MR1968723

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.