A functional hungarian construction for sums of independent random variables
Annales de l'I.H.P. Probabilités et statistiques (2002)
- Volume: 38, Issue: 6, page 923-957
- ISSN: 0246-0203
Access Full Article
topHow to cite
topGrama, Ion, and Nussbaum, Michael. "A functional hungarian construction for sums of independent random variables." Annales de l'I.H.P. Probabilités et statistiques 38.6 (2002): 923-957. <http://eudml.org/doc/77749>.
@article{Grama2002,
author = {Grama, Ion, Nussbaum, Michael},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {partial sum process; Komlos-Major-Tusnady inequality; non-identically distributed variables; Hölder class; asymptotic equivalence of statistical experiments},
language = {eng},
number = {6},
pages = {923-957},
publisher = {Elsevier},
title = {A functional hungarian construction for sums of independent random variables},
url = {http://eudml.org/doc/77749},
volume = {38},
year = {2002},
}
TY - JOUR
AU - Grama, Ion
AU - Nussbaum, Michael
TI - A functional hungarian construction for sums of independent random variables
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2002
PB - Elsevier
VL - 38
IS - 6
SP - 923
EP - 957
LA - eng
KW - partial sum process; Komlos-Major-Tusnady inequality; non-identically distributed variables; Hölder class; asymptotic equivalence of statistical experiments
UR - http://eudml.org/doc/77749
ER -
References
top- [1] J. Bretagnolle, P. Massart, Hungarian constructions from the nonasymptotic viewpoint, Ann. Probab.17 (1989) 239-256. Zbl0667.60042MR972783
- [2] M. Csörgő, P. Révész, Strong Approximations in Probability and Statistics, Academic Press, New York, 1981. Zbl0539.60029MR666546
- [3] R. Dudley, Real Analysis and Probability, Wadsworth and Brooks/Cole, Pacific Grove, CA, 1989. Zbl0686.60001MR982264
- [4] U. Einmahl, Extensions on results of Komlós, Major and Tusnády to the multivariate case, J. Multivariate Anal.28 (1989) 20-68. Zbl0676.60038MR996984
- [5] U. Einmahl, D.M. Mason, Gaussian approximation of local empirical processes indexed by functions, Probab. Theory Related Fields107 (1997) 283-311. Zbl0878.60025MR1440134
- [6] I. Grama, M. Nussbaum, Asymptotic equivalence for nonparametric generalized linear models, Probab. Theory Related Fields111 (1998) 167-214. Zbl0953.62039MR1633574
- [7] B.S. Kashin, A.A. Saakyan, Orthogonal Series, American Mathematical Society, Providence, RI, 1989. Zbl0668.42011MR1007141
- [8] V.I. Koltchinskii, Komlós–Major–Tusnády approximation for the general empirical process and Haar expansions of classes of functions, J. Theoret. Probab.7 (1994) 73-118. Zbl0810.60002
- [9] J. Komlós, P. Major, G. Tusnády, An approximation of partial sums of independent rv's and the sample df. I, Z. Wahrsch. verw. Gebiete32 (1975) 111-131. Zbl0308.60029MR375412
- [10] J. Komlós, P. Major, G. Tusnády, An approximation of partial sums of independent rv's and the sample df. II, Z. Wahrsch. verw. Gebiete34 (1976) 33-58. Zbl0307.60045MR402883
- [11] L. Le Cam, Asymptotic Methods in Statistical Decision Theory, Springer-Verlag, New York, 1986. Zbl0605.62002MR856411
- [12] L. Le Cam, G.L. Yang, Asymptotics in Statistics: Some Basic Concepts, Springer-Verlag, New York, 2000. Zbl0719.62003MR1784901
- [13] P. Massart, Strong approximation for multivariate empirical and related processes, via KMT constructions, Ann. Probab.17 (1989) 266-291. Zbl0675.60026MR972785
- [14] M. Nussbaum, Asymptotic equivalence of density estimation and white noise, Preprint No. 35, Institute of Applied Analysis and Stochastics, Berlin, 1993. MR747259
- [15] M. Nussbaum, Asymptotic equivalence of density estimation and Gaussian white noise, Ann. Statist.24 (1996) 2399-2430. Zbl0867.62035MR1425959
- [16] E. Rio, Strong approximation for set-indexed partial sum processes, via K.M.T. constructions I, Ann. Probab.21 (1993) 759-790. Zbl0776.60045MR1217564
- [17] E. Rio, Strong approximation for set-indexed partial sum processes, via K.M.T. constructions II, Ann. Probab.21 (1993) 1706-1727. Zbl0779.60030MR1235436
- [18] E. Rio, Local invariance principles and their applications to density estimation, Probab. Theory Related Fields98 (1994) 21-45. Zbl0794.60019MR1254823
- [19] A. Sakhanenko, The rate of convergence in the invariance principle for non-identically distributed variables with exponential moments, Limit theorems for sums of random variables. Trudy Inst. Matem., Sibirsk. Otdel. AN SSSR.3 (1984) 3-49, (in Russian). Zbl0541.60024MR749757
- [20] A. van der Vaart, J. Wellner, Weak Convergence and Empirical Processes, Springer-Verlag, New York, 1996. Zbl0862.60002MR1385671
- [21] A. Zaitsev, On the Gaussian approximation of convolutions under multidimensional analogues of S.N. Bernstein's inequality conditions, Probab. Theory Related Fields74 (1987) 534-566. Zbl0612.60031MR876255
- [22] A. Zaitsev, Estimates for quantiles of smooth conditional distributions and multidimensional invariance principle, Siberian Math. J.37 (1996) 807-831. Zbl0881.60034MR1643370
- [23] A. Zaitsev, Multidimensional version of the results of Komlós, Major and Tusnády for vectors with finite exponential moments, ESAIM: P & S2 (1998) 41-108. Zbl0897.60033MR1616527
- [24] A. Zaitsev, Multidimensional version of a result of Sakhanenko in the invariance principle for vectors with finite exponential moments. I, Theory Probab. Appl.45 (2001) 624-641. Zbl0994.60029MR1968723
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.