Rolling-ball method for estimating the boundary of the support of a point-process intensity

Peter Hall[1]; Byeong U. Park; Berwin A. Turlach

  • [1] Australian National University, centre for Mathematics and its Applications, Mathematical Sciences Institute, John Dedman Building, Canberra ACT 0200 (AUSTRALIE)

Annales de l'I.H.P. Probabilités et statistiques (2002)

  • Volume: 38, Issue: 6, page 959-971
  • ISSN: 0246-0203

How to cite

top

Hall, Peter, Park, Byeong U., and Turlach, Berwin A.. "Rolling-ball method for estimating the boundary of the support of a point-process intensity." Annales de l'I.H.P. Probabilités et statistiques 38.6 (2002): 959-971. <http://eudml.org/doc/77750>.

@article{Hall2002,
affiliation = {Australian National University, centre for Mathematics and its Applications, Mathematical Sciences Institute, John Dedman Building, Canberra ACT 0200 (AUSTRALIE)},
author = {Hall, Peter, Park, Byeong U., Turlach, Berwin A.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {bias correction; confidence band; curvature; envelope; frontier; productivity analysis; rotation invariance},
language = {eng},
number = {6},
pages = {959-971},
publisher = {Elsevier},
title = {Rolling-ball method for estimating the boundary of the support of a point-process intensity},
url = {http://eudml.org/doc/77750},
volume = {38},
year = {2002},
}

TY - JOUR
AU - Hall, Peter
AU - Park, Byeong U.
AU - Turlach, Berwin A.
TI - Rolling-ball method for estimating the boundary of the support of a point-process intensity
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2002
PB - Elsevier
VL - 38
IS - 6
SP - 959
EP - 971
LA - eng
KW - bias correction; confidence band; curvature; envelope; frontier; productivity analysis; rotation invariance
UR - http://eudml.org/doc/77750
ER -

References

top
  1. [1] A.J. Cabo, P. Groeneboom, Limit theorems for functionals of convex hulls, Probab. Theory Related Fields100 (1994) 31-55. Zbl0808.60019MR1292189
  2. [2] A. Charnes, W.W. Cooper, A.Y. Lewin, L.M. Seiford, Data Envelope Analysis: Theory, Methodology and Applications, Kluwer, Boston, 1995. Zbl0858.00049
  3. [3] L. Christensen, R. Greene, Economics of scale in US electric power generation, J. Polit. Economy84 (1976) 653-667. 
  4. [4] B. Efron, The convex hull of a random set of points, Biometrika52 (1965) 331-343. Zbl0138.41301MR207004
  5. [5] I. Gijbels, E. Mammen, B.U. Park, L. Simar, On estimation of monotone and concave frontier functions, J. Amer. Statist. Assoc.94 (1999) 220-228. Zbl1043.62105MR1689226
  6. [6] P. Groeneboom, Limit theorems for convex hulls, Probab. Theory Related Fields79 (1988) 327-368. Zbl0635.60012MR959514
  7. [7] S. Grosskopf, Statistical inference and nonparametric efficiency: a selective survey, J. Productivity Anal.7 (1996) 161-176. 
  8. [8] P. Hall, B.U. Park, S. Stern, On polynomial estimators of frontiers and boundaries, J. Multivariate Anal.66 (1998) 71-98. Zbl1127.62358MR1648521
  9. [9] W. Härdle, B.U. Park, A.B. Tsybakov, Estimation of non-sharp support boundaries, J. Multivariate Anal.55 (1995) 205-218. Zbl0863.62030MR1370400
  10. [10] A. Kneip, B.U. Park, L. Simar, A note on the convergence of nonparametric DEA estimators for production efficiency scores, Econometric Theory14 (1998) 783-793. MR1666696
  11. [11] A.P. Korostelev, A.B. Tsybakov, Minimax Theory of Image Reconstruction, Lecture Notes in Statistics, 82, Springer-Verlag, Berlin, 1993. Zbl0833.62039MR1226450
  12. [12] A.P. Korostelev, L. Simar, A.B. Tsybakov, Efficient estimation of monotone boundaries, Ann. Statist.23 (1995) 476-489. Zbl0829.62043MR1332577
  13. [13] A.P. Korostelev, L. Simar, A.B. Tsybakov, On estimation of monotone and convex boundaries, Pub. Inst. Statist. Univ. Paris49 (1995) 3-18. Zbl0817.62023MR1744393
  14. [14] E. Mammen, A.B. Tsybakov, Asymptotical minimax recovery of sets with smooth boundaries, Ann. Statist.23 (1995) 502-524. Zbl0834.62038MR1332579
  15. [15] D.H. McLain, Two dimensional interpolation from random data, Comput. J.19 (1976) 178-181. Zbl0321.65009MR431604
  16. [16] J. Møller, Lectures on Random Voronoi Tessellations, Lecture Notes in Statistics, 87, Springer-Verlag, New York, 1994. Zbl0812.60016MR1295245
  17. [17] A.V. Nagaev, Some properties of convex hulls generated by homogeneous Poisson point processes in an unbounded convex domain, Ann. Inst. Statist. Math.47 (1995) 21-29. Zbl0829.60040MR1341202
  18. [18] B.D. Ripley, Spatial Statistics, Wiley, New York, 1981. Zbl0583.62087MR624436
  19. [19] J. O'Rourke, Computational Geometry in C, Cambridge University Press, Cambridge, 1994. Zbl0912.68201
  20. [20] A. Rényi, R. Sulanke, On the convex hull of n randomly chosen points, Z. Wahrscheinlichkeitstheorie Verw. Geb.2 (1963) 75-84. Zbl0118.13701
  21. [21] A. Rényi, R. Sulanke, On the convex hull of n randomly chosen points II, Z. Wahrscheinlichkeitstheorie Verw. Geb.3 (1964) 138-147. Zbl0126.34103MR169139
  22. [22] L.M. Seiford, Data envelopment analysis: the evolution of the state-of-the-art, 1978–1995, J. Productivity Anal.7 (1996) 99-137. 
  23. [23] R. Turner, D. Macqueen, S function Deldir to compute the Dirichlet (Voronoi) tesselation and Delaunay triangulation of a planar set of data points, Available from Statlib, 1996. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.