Mutually catalytic branching in the plane : uniqueness

Donald A. Dawson; Klaus Fleischmann; Leonid Mytnik; Edwin A. Perkins; Jie Xiong

Annales de l'I.H.P. Probabilités et statistiques (2003)

  • Volume: 39, Issue: 1, page 135-191
  • ISSN: 0246-0203

How to cite

top

Dawson, Donald A., et al. "Mutually catalytic branching in the plane : uniqueness." Annales de l'I.H.P. Probabilités et statistiques 39.1 (2003): 135-191. <http://eudml.org/doc/77754>.

@article{Dawson2003,
author = {Dawson, Donald A., Fleischmann, Klaus, Mytnik, Leonid, Perkins, Edwin A., Xiong, Jie},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {catalytic super-Brownian motion; collision local time; martingale problem duality; uniqueness; Markov property},
language = {eng},
number = {1},
pages = {135-191},
publisher = {Elsevier},
title = {Mutually catalytic branching in the plane : uniqueness},
url = {http://eudml.org/doc/77754},
volume = {39},
year = {2003},
}

TY - JOUR
AU - Dawson, Donald A.
AU - Fleischmann, Klaus
AU - Mytnik, Leonid
AU - Perkins, Edwin A.
AU - Xiong, Jie
TI - Mutually catalytic branching in the plane : uniqueness
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 1
SP - 135
EP - 191
LA - eng
KW - catalytic super-Brownian motion; collision local time; martingale problem duality; uniqueness; Markov property
UR - http://eudml.org/doc/77754
ER -

References

top
  1. [1] M. Barlow, S. Evans, E. Perkins, Collision local times and measure-valued processes, Can. J. Math.43 (5) (1991) 897-938. Zbl0765.60044MR1138572
  2. [2] D. Dawson, Measure-valued Markov Processes, École d'été de Probabilités de Saint Flour, 1991. Zbl0799.60080
  3. [3] D. Dawson, A. Etheridge, K. Fleischmann, L. Mytnik, E. Perkins, J. Xiong, Mutually catalytic branching in the plane: Finite measure states, Ann. Probab.30 (4) (2002) 1681-1762. Zbl1017.60098MR1944004
  4. [4] D. Dawson, A. Etheridge, K. Fleischmann, L. Mytnik, E. Perkins, J. Xiong, Mutually catalytic branching in the plane: infinite measure states, Electron. J. Probab.7 (15) (2002). Zbl1016.60075MR1921744
  5. [5] D. Dawson, E. Perkins, Long time behaviour and co-existence in a mutually catalytic branching model, Ann. Probab.26 (3) (1998) 1088-1138. Zbl0938.60042MR1634416
  6. [6] P. Donnelly, T. Kurtz, Particle representations for measure-valued population models, Ann. Probab.27 (1999) 166-205. Zbl0956.60081MR1681126
  7. [7] S.N. Ethier, T.G. Kurtz, Markov Process: Characterization and Convergence, John Wiley and Sons, New York, 1986. Zbl0592.60049MR838085
  8. [8] S. Evans, E. Perkins, Collision local times, historical stochastic calculus, and competing superprocesses, Electron. J. Probab.3 (5) (1998). Zbl0899.60081MR1615329
  9. [9] N. Konno, T. Shiga, Stochastic differential equations for some measure-valued diffusions, Probab. Theory Related Fields79 (1988) 201-225. Zbl0631.60058MR958288
  10. [10] P. Meyer, Un cours sur les intégrales stochastiques, in: Meyer P. (Ed.), Séminaire de Probabilités, X, Lecture Notes in Mathematics, 511, Springer, Berlin, 1976, pp. 245-400. Zbl0374.60070MR501332
  11. [11] L. Mytnik, Superprocesses in random environments, Ann. Probab.24 (1996) 1953-1978. Zbl0874.60041MR1415235
  12. [12] L. Mytnik, Uniqueness for a mutually catalytic branching model, Probab. Theory Related Fields112 (2) (1998) 245-253. Zbl0912.60076MR1653845
  13. [13] E. Perkins, Measure-valued branching diffusions with spatial interactions, Probab. Theory Related Fields94 (1992) 189-245. Zbl0767.60044MR1191108
  14. [14] E. Perkins, On the martingale problem for interactive measure-valued branching diffusions, Mem. Amer. Math. Soc.549 (1995). Zbl0823.60071MR1249422
  15. [15] M. Reimers, One-dimensional stochastic partial differential equations and the branching measure diffusion, Probab. Theory Related Fields81 (1989) 319-340. Zbl0651.60069MR983088
  16. [16] J. Walsh, An introduction to stochastic partial differential equations, Lecture Notes in Mathematics1180 (1986) 265-439. Zbl0608.60060MR876085

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.