Exact rates in Vapnik-Chervonenkis bounds

Nicolas Vayatis

Annales de l'I.H.P. Probabilités et statistiques (2003)

  • Volume: 39, Issue: 1, page 95-119
  • ISSN: 0246-0203

How to cite

top

Vayatis, Nicolas. "Exact rates in Vapnik-Chervonenkis bounds." Annales de l'I.H.P. Probabilités et statistiques 39.1 (2003): 95-119. <http://eudml.org/doc/77758>.

@article{Vayatis2003,
author = {Vayatis, Nicolas},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {empirical processes; Vapnik-Červonenkis classes of sets; exponential bounds},
language = {eng},
number = {1},
pages = {95-119},
publisher = {Elsevier},
title = {Exact rates in Vapnik-Chervonenkis bounds},
url = {http://eudml.org/doc/77758},
volume = {39},
year = {2003},
}

TY - JOUR
AU - Vayatis, Nicolas
TI - Exact rates in Vapnik-Chervonenkis bounds
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 1
SP - 95
EP - 119
LA - eng
KW - empirical processes; Vapnik-Červonenkis classes of sets; exponential bounds
UR - http://eudml.org/doc/77758
ER -

References

top
  1. [1] K. Alexander, Probability inequalities for empirical processes and a law of the iterated logarithm, Ann. Probab.4 (1984) 1041-1067. Zbl0549.60024MR757769
  2. [2] R. Azencott, Communication for the fifty years of the Department of Mathematics at Brown University (USA), 1996. 
  3. [3] S. Boucheron, G. Lugosi, P. Massart, A sharp concentration inequality with applications, Random Structures and Algorithms16 (3) (2000) 277-292. Zbl0954.60008MR1749290
  4. [4] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, Springer, 1998. Zbl0896.60013MR1619036
  5. [5] L. Devroye, Bounds for the uniform deviation of empirical measures, J. Multivariate Anal.12 (1982) 72-79. Zbl0492.60006MR650929
  6. [6] L. Devroye, L. Györfi, G. Lugosi, A Probabilistic Theory of Pattern Recognition, Springer, 1996. Zbl0853.68150MR1383093
  7. [7] R.M. Dudley, A course on empirical processes, in: Hennequin P.L. (Ed.), Ecole d'Eté de Probabilités de Saint-Flour XII – 1982, Lecture Notes in Mathematics, 1097, Springer-Verlag, 1982, pp. 1-142. Zbl0554.60029
  8. [8] A. Dvoretzky, J. Kiefer, J. Wolfowitz, Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator, Ann. Math. Statist.27 (1956) 642-669. Zbl0073.14603MR83864
  9. [9] E. Giné, J. Zinn, On the central limit theorem for empirical processes, Ann. Probab.12 (1984) 929-989. Zbl0553.60037
  10. [10] D. Haussler, Sphere packing numbers for subsets of the Boolean n-cube with bounded Vapnik–Chervonenkis dimension, J. Combin. Theory Series A69 (1995) 217-232. Zbl0818.60005
  11. [11] W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc.58 (1963) 13-30. Zbl0127.10602MR144363
  12. [12] J. Kiefer, On large deviations of the empirical d.f. of vector chance variables and a law of the iterated logarithm, Pacific J. Math.11 (1961) 649-660. Zbl0119.34904MR131885
  13. [13] M. Ledoux, M. Talagrand, Probability in Banach Spaces, Springer-Verlag, 1992. Zbl0748.60004MR1102015
  14. [14] G. Lugosi, Improved upper bounds for probabilities of uniform deviations, Statist. Probab. Lett.25 (1995) 71-77. Zbl0839.60020MR1364820
  15. [15] P. Massart, Rates of convergence in the central limit theorem for empirical processes, Annales de l'Institut Henri Poincaré22 (4) (1986) 381-423. Zbl0615.60032MR871904
  16. [16] P. Massart, The tight constant in the Dvoretzky–Kiefer–Wolfowitz inequality, Ann. Probab.18 (1990) 1269-1283. Zbl0713.62021
  17. [17] J.M.R. Parrondo, C. van den Broeck, Vapnik–Chervonenkis bounds for generalization, J. Phys. A: Math. Gen.26 (1993) 2211-2223. Zbl0777.60098
  18. [18] D. Pollard, Convergence of Stochastic Processes, Springer-Verlag, 1984. Zbl0544.60045MR762984
  19. [19] D. Pollard, Empirical Processes: Theory and Applications, NSF-CBMS Regional Conference Series in Probability and Statistics, 2, Institute of Mathematical Statistics, 1991. Zbl0741.60001MR1089429
  20. [20] E. Rio, Inégalités de concentration pour les processus empiriques de classes de parties, Probab. Theory Related Fields (2000), to appear. Zbl0976.60033MR1818244
  21. [21] M. Talagrand, Sharper bounds for Gaussian and empirical processes, Ann. Probab.22 (1) (1994) 28-76. Zbl0798.60051MR1258865
  22. [22] A.W. van der Vaart, J.A. Wellner, Weak Convergence and Empirical Processes, Springer, 1996. Zbl0862.60002MR1385671
  23. [23] V.N. Vapnik, Estimation of Dependencies on the Basis of Empirical Data, Springer, 1982. Zbl0499.62005
  24. [24] V.N. Vapnik, The Nature of Statistical Learning Theory, Springer, 1995. Zbl0833.62008MR1367965
  25. [25] V.N. Vapnik, Statistical Learning Theory, Wiley-Interscience, 1998. Zbl0935.62007MR1641250
  26. [26] V.N. Vapnik, A.Y. Chervonenkis, On the uniform convergence of relative frequencies of events to their probabilities, Theory Probab. Appl.16 (1971) 264-280. Zbl0247.60005
  27. [27] V.N. Vapnik, A.Y. Chervonenkis, Necessary and sufficient conditions for the uniform convergence of the means to their expectations, Theory Probab. Appl.26 (1981) 532-555. Zbl0487.60036MR627861
  28. [28] V.N. Vapnik, E. Levin, Y. Le Cun, Measuring the VC-dimension of a learning machine, Neural Comput.6 (1994) 851-876. 
  29. [29] N. Vayatis, Inégalités de Vapnik–Chervonenkis et mesures de complexité, Ph.D. thesis, Ecole Polytechnique, 2000, in English. 
  30. [30] L. Wu, Large deviations, moderate deviations and LIL for empirical processes, Ann. Probab.22 (1) (1994) 17-27. Zbl0793.60032MR1258864

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.