Exact rates in Vapnik-Chervonenkis bounds
Annales de l'I.H.P. Probabilités et statistiques (2003)
- Volume: 39, Issue: 1, page 95-119
- ISSN: 0246-0203
Access Full Article
topHow to cite
topVayatis, Nicolas. "Exact rates in Vapnik-Chervonenkis bounds." Annales de l'I.H.P. Probabilités et statistiques 39.1 (2003): 95-119. <http://eudml.org/doc/77758>.
@article{Vayatis2003,
author = {Vayatis, Nicolas},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {empirical processes; Vapnik-Červonenkis classes of sets; exponential bounds},
language = {eng},
number = {1},
pages = {95-119},
publisher = {Elsevier},
title = {Exact rates in Vapnik-Chervonenkis bounds},
url = {http://eudml.org/doc/77758},
volume = {39},
year = {2003},
}
TY - JOUR
AU - Vayatis, Nicolas
TI - Exact rates in Vapnik-Chervonenkis bounds
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 1
SP - 95
EP - 119
LA - eng
KW - empirical processes; Vapnik-Červonenkis classes of sets; exponential bounds
UR - http://eudml.org/doc/77758
ER -
References
top- [1] K. Alexander, Probability inequalities for empirical processes and a law of the iterated logarithm, Ann. Probab.4 (1984) 1041-1067. Zbl0549.60024MR757769
- [2] R. Azencott, Communication for the fifty years of the Department of Mathematics at Brown University (USA), 1996.
- [3] S. Boucheron, G. Lugosi, P. Massart, A sharp concentration inequality with applications, Random Structures and Algorithms16 (3) (2000) 277-292. Zbl0954.60008MR1749290
- [4] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, Springer, 1998. Zbl0896.60013MR1619036
- [5] L. Devroye, Bounds for the uniform deviation of empirical measures, J. Multivariate Anal.12 (1982) 72-79. Zbl0492.60006MR650929
- [6] L. Devroye, L. Györfi, G. Lugosi, A Probabilistic Theory of Pattern Recognition, Springer, 1996. Zbl0853.68150MR1383093
- [7] R.M. Dudley, A course on empirical processes, in: Hennequin P.L. (Ed.), Ecole d'Eté de Probabilités de Saint-Flour XII – 1982, Lecture Notes in Mathematics, 1097, Springer-Verlag, 1982, pp. 1-142. Zbl0554.60029
- [8] A. Dvoretzky, J. Kiefer, J. Wolfowitz, Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator, Ann. Math. Statist.27 (1956) 642-669. Zbl0073.14603MR83864
- [9] E. Giné, J. Zinn, On the central limit theorem for empirical processes, Ann. Probab.12 (1984) 929-989. Zbl0553.60037
- [10] D. Haussler, Sphere packing numbers for subsets of the Boolean n-cube with bounded Vapnik–Chervonenkis dimension, J. Combin. Theory Series A69 (1995) 217-232. Zbl0818.60005
- [11] W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc.58 (1963) 13-30. Zbl0127.10602MR144363
- [12] J. Kiefer, On large deviations of the empirical d.f. of vector chance variables and a law of the iterated logarithm, Pacific J. Math.11 (1961) 649-660. Zbl0119.34904MR131885
- [13] M. Ledoux, M. Talagrand, Probability in Banach Spaces, Springer-Verlag, 1992. Zbl0748.60004MR1102015
- [14] G. Lugosi, Improved upper bounds for probabilities of uniform deviations, Statist. Probab. Lett.25 (1995) 71-77. Zbl0839.60020MR1364820
- [15] P. Massart, Rates of convergence in the central limit theorem for empirical processes, Annales de l'Institut Henri Poincaré22 (4) (1986) 381-423. Zbl0615.60032MR871904
- [16] P. Massart, The tight constant in the Dvoretzky–Kiefer–Wolfowitz inequality, Ann. Probab.18 (1990) 1269-1283. Zbl0713.62021
- [17] J.M.R. Parrondo, C. van den Broeck, Vapnik–Chervonenkis bounds for generalization, J. Phys. A: Math. Gen.26 (1993) 2211-2223. Zbl0777.60098
- [18] D. Pollard, Convergence of Stochastic Processes, Springer-Verlag, 1984. Zbl0544.60045MR762984
- [19] D. Pollard, Empirical Processes: Theory and Applications, NSF-CBMS Regional Conference Series in Probability and Statistics, 2, Institute of Mathematical Statistics, 1991. Zbl0741.60001MR1089429
- [20] E. Rio, Inégalités de concentration pour les processus empiriques de classes de parties, Probab. Theory Related Fields (2000), to appear. Zbl0976.60033MR1818244
- [21] M. Talagrand, Sharper bounds for Gaussian and empirical processes, Ann. Probab.22 (1) (1994) 28-76. Zbl0798.60051MR1258865
- [22] A.W. van der Vaart, J.A. Wellner, Weak Convergence and Empirical Processes, Springer, 1996. Zbl0862.60002MR1385671
- [23] V.N. Vapnik, Estimation of Dependencies on the Basis of Empirical Data, Springer, 1982. Zbl0499.62005
- [24] V.N. Vapnik, The Nature of Statistical Learning Theory, Springer, 1995. Zbl0833.62008MR1367965
- [25] V.N. Vapnik, Statistical Learning Theory, Wiley-Interscience, 1998. Zbl0935.62007MR1641250
- [26] V.N. Vapnik, A.Y. Chervonenkis, On the uniform convergence of relative frequencies of events to their probabilities, Theory Probab. Appl.16 (1971) 264-280. Zbl0247.60005
- [27] V.N. Vapnik, A.Y. Chervonenkis, Necessary and sufficient conditions for the uniform convergence of the means to their expectations, Theory Probab. Appl.26 (1981) 532-555. Zbl0487.60036MR627861
- [28] V.N. Vapnik, E. Levin, Y. Le Cun, Measuring the VC-dimension of a learning machine, Neural Comput.6 (1994) 851-876.
- [29] N. Vayatis, Inégalités de Vapnik–Chervonenkis et mesures de complexité, Ph.D. thesis, Ecole Polytechnique, 2000, in English.
- [30] L. Wu, Large deviations, moderate deviations and LIL for empirical processes, Ann. Probab.22 (1) (1994) 17-27. Zbl0793.60032MR1258864
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.