Rates of convergence in the central limit theorem for empirical processes

Pascal Massart

Annales de l'I.H.P. Probabilités et statistiques (1986)

  • Volume: 22, Issue: 4, page 381-423
  • ISSN: 0246-0203

How to cite

top

Massart, Pascal. "Rates of convergence in the central limit theorem for empirical processes." Annales de l'I.H.P. Probabilités et statistiques 22.4 (1986): 381-423. <http://eudml.org/doc/77286>.

@article{Massart1986,
author = {Massart, Pascal},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {empirical Brownian bridge; exponential inequalities; weak and strong invariance principles; empirical processes},
language = {eng},
number = {4},
pages = {381-423},
publisher = {Gauthier-Villars},
title = {Rates of convergence in the central limit theorem for empirical processes},
url = {http://eudml.org/doc/77286},
volume = {22},
year = {1986},
}

TY - JOUR
AU - Massart, Pascal
TI - Rates of convergence in the central limit theorem for empirical processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1986
PB - Gauthier-Villars
VL - 22
IS - 4
SP - 381
EP - 423
LA - eng
KW - empirical Brownian bridge; exponential inequalities; weak and strong invariance principles; empirical processes
UR - http://eudml.org/doc/77286
ER -

References

top
  1. [1] K. Alexander, Ph. D. Dissertation, Mass. Inst. Tech., 1982. 
  2. [2] K. Alexander, Probability inequalities for empirical processes and a law of iterated logarithm. Annals of Probability, t. 12, 4, 1984, p. 1041–1067. Zbl0549.60024MR757769
  3. [3] P. Assouad, Densité et dimension, Ann. Inst. Fourier, Grenoble, t. 33, 3, 1983, p. 233- 282. Zbl0504.60006MR723955
  4. [4] N.S. Bakhvalov, On approximate calculation of multiple integrals (in Russian). Vestnik Mosk. Ser. Mat. Mekh. Astron. Fiz. Khim., t. 4, 1959, p. 3-18. Zbl0091.12303
  5. [5] G. Bennett, Probability inequalities for sums of independent random variables. J. Amer. Statist. Assoc., t. 57, 1962, p. 33-45. Zbl0104.11905
  6. [6] I. Berkes, W. Philipp, Approximation theorems for independent and weakly dependent random vectors. Ann. Probability, t. 7, 1979, p. 29-54. Zbl0392.60024MR515811
  7. [7] P. Billingsley, Convergence of probability measures. Wiley, New York. Zbl0172.21201MR1700749
  8. [8] I.S. Borisov, Abstracts of the Colloquium on non parametric statistical inference, Bundapest, 1980, p. 77-87. 
  9. [9] L. Breiman, On the tail behavior of sums of independent random variables. Z. Warschein. Verw. Geb., t. 9, 1967, p. 20-25. Zbl0339.60050MR226707
  10. [10] L. Breiman, Probability. Reading Mass., Addison-Wesley, 1968. Zbl0174.48801MR229267
  11. [11] E. Cabaña, On the transition density of a multidimensional parameter Wiener process with one barrier. J. Appl. Prob., t. 21, 1984, p. 197-200. Zbl0534.60072MR732686
  12. [12] E. Cabana, M. Wschebor, The two-parameter Brownian bridge. Annals of Probability, t. 10, 2, 1982, p. 289-302. Zbl0532.60072MR647505
  13. [13] D.L. Cohn, Measure theory. Birkhaiiser, Boston, 1980. Zbl0436.28001MR578344
  14. [14] M. Csörgo, P.A. Révész, A new method to prove Strassen type laws of invariance principle II. Z. Warschein. Verw. Geb., t. 31, 1975, p. 261-269. Zbl0283.60024
  15. [15] H. Dehling, Limit theorems for sums of weakly dependent Banach space valued random variables. Z. Warschein. Verw. Geb., 1983, p. 391-432. Zbl0496.60004MR705631
  16. [16] L. Devroye, Bounds for the uniform deviations of empirical measures. J. of Multivar. Anal., t. 13, 1982, p. 72-79. Zbl0492.60006MR650929
  17. [17] Hu Inchi, A uniform bound for the tail probability of Kolmogorov-Smirnov statistics. The Annals of Statistics, t. 13, 2, 1985, p. 821-826. Zbl0606.62018MR790579
  18. [18] R.M. Dudley, The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J. Functional Analysis, t. 1, 1967, p. 290-330. Zbl0188.20502MR220340
  19. [19] R.M. Dudley, Metric entropy of some classes of sets with differential boundaries. J. Approximation Theory, t. 10, 1974, p. 227-236. Zbl0275.41011MR358168
  20. [20] R.M. Dudley, Central limit theorems for empirical measures. Ann. Probability, t. 6, 1978, p. 899-929 ; correction, t. 7, 1979, p. 909-911. Zbl0404.60016MR512411
  21. [21] R.M. Dudley, Saint-Flour, 1982. Lecture Notes in Mathematics n° 1097. Zbl0554.60029
  22. [22] R.M. Dudley, Durst, Empirical Processes, Vapnik-Cervonenkis classes and Poisson processes. Proba. and Math. Stat. (Wroclaw), t. 1, 1981, p. 109-115. Zbl0502.60019MR626305
  23. [23] R.M. Dudley, W. Philipp, Invariance principles for sums of Banach spaces valued random elements and empirical processes. Z. Warschein. Verw. Geb., t. 82, 1983, p. 509-552. Zbl0488.60044MR690575
  24. [24] A. Dvoretzky, J.C. Kiefer, J. Wolfowitz, Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator. Ann. Math. Stat., t. 33, 1956, p. 642-669. Zbl0073.14603MR83864
  25. [25] X. Fernique, Régularité de processus gaussiens. Invent. Math., t. 12, 1971, p. 304-320. Zbl0217.21104MR286166
  26. [26] P. Gaenssler, W. Stute, Empirical processes: a survey of results for independent and identically distributed random variables. Ann. Proba., t. 7, p. 193-243. Zbl0402.60031MR525051
  27. [27] M.E. Gine, J. Zinn, On the central limit theorem for empirical processes. Annals of Probability, t. 12, 4, 1984, p. 929-989. Zbl0553.60037
  28. [28] V. Goodman, Distribution estimations for functionals of the two parameter Wiener process. Annals of Probability, t. 4, 6, 1976, p. 977-982. Zbl0344.60048MR423556
  29. [29] W. Hoeffding, Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc., t. 58, 1963, p. 13-30. Zbl0127.10602MR144363
  30. [30] I.A. Ibragimov, R.Z. Khasminskii, On the non-parametric density estimates. Zap. Naucha. Semin. LOMI, t. 108, 1981, p. 73-81. In Russian. 
  31. [31] N. Jain, M.B. Marcus, Central limit theorem for C(S)-valued random variables. J. Functional Analysis, t. 19, 1975, p. 216-231. Zbl0305.60004MR385994
  32. [32] J.P. Kahane, Some random series of functions. Lexington, Mass.D. C. Heuth, 1968. Zbl0192.53801MR254888
  33. [33] S. Karlin, H.M. Taylor, A first course in Stochastic Processes, 1971, Academic Press, New-York. Zbl0315.60016
  34. [34] J.C. Kiefer, On large deviations of the empirical d. f. of vector chance variables and a law of iterated logarithm. Pacific J. Math., t. 11, 1961, p. 649-660. Zbl0119.34904MR131885
  35. [35] J.C. Kiefer, J. Wolfowitz, On the deviations of the empiric distribution function of vector variables. Trans. Amer. Math. Soc., t. 87, 1958, p. 173-186. Zbl0088.11305MR99075
  36. [36] A.N. Kolmogorov, V.M. Tikhomirov, ∈-entropy and ∈-capacity of sets in functional spaces. Amer. Math. Soc. Transl. ser. 2, t. 17, 1961, p. 277-364. Zbl0133.06703MR124720
  37. [37] J. Komlos, P. Major, G. Tusnady, An approximation of partial sums of independent RV' s and the sample DF. 1. Z. Warschein. Verw. Geb., t. 32, 1975, p. 111-131. Zbl0308.60029MR375412
  38. [38] L. Le Cam, A remark on empirical measures. In A Fetscheift for Erich L. Lehmam in Honor of his Sixty-Fifth Birthday, 1983, p. 305-327Wadsworth, Belmont, California. Zbl0525.60022MR689752
  39. [39] P. Major, The approximation of partial sums of independent RV' s. Z. Warschein. Verw. Geb., t. 35, 1976, p. 213-220. Zbl0338.60031MR415743
  40. [40] P. Massart, Vitesse de convergence dans le théorème de la limite centrale pour le processus empirique. Thèse de 3e cycle n° 3545de l'Université de Paris-Sud, 1983. Zbl0524.60025
  41. [41] P. Massart, Vitesses de convergence dans le théorème central limite pour des processus empiriques. Note aux C. R. A. S., t. 296, 20 juin 1983, Serie I, p. 937-940. Zbl0524.60025MR719281
  42. [42] P.A. Meyer, Martingales and stochastic integrals I. Lecture Notes in Mathematics, t. 284. Zbl0239.60001
  43. [43] W. Philipp, Almost sure invariance principles for sums of B-valued random variables. Lecture Notes in Mathematics, t. 709, p. 171-193. Zbl0418.60013MR537701
  44. [44] D. Pollard, A central limit theorem for empirical processes. J. Australian Math. Soc. Ser. A, t. 33, 1982, p. 235-248. Zbl0504.60023MR668445
  45. [45] D. Pollard, Rates of strong uniform convergence, 1982. Preprint. 
  46. [46] R.J. Serfling, Probability inequalities for the sum in sampling without replacement. Ann. Stat., t. 2, 1, 1974, p. 39-48. Zbl0288.62005MR420967
  47. [47] M. Sion, On uniformization of sets in topological spaces. Trans. Amer. Math. Soc., t. 96, 1960, p. 237-245. Zbl0094.25902MR131506
  48. [48] A.V. Skorohod, Theory Prob. Appl., t. 21, 1976, p. 628-632. Zbl0362.60004
  49. [49] V. Strassen, The existence of probability measures with given marginals. Ann. Math. Stat., t. 36, 1965, p. 423-439. Zbl0135.18701MR177430
  50. [50] G. Tusnady, A remark on the approximation of the sample DF in the multidimensional case. Periodica Math. Hung., t. 8, 1977, p. 53-55. Zbl0386.60006MR443045
  51. [51] V.N. Vapnik, A.Y. Cervonenkis, On the uniform convergence of relative frequencies of events to their probabilities. Theor. Prob. Appl., t. 16, 1971, p. 264-328. Zbl0247.60005
  52. [52] V.V. Yurinskii, A smoothing inequality for estimates of the Lévy-Prohorov distance. Theory Prob. Appl., t. 20, 1975, p. 1-10. Zbl0351.60007MR370697
  53. [53] V.V. Yurinskii, On the error of the gaussian approximation for convolutions. Theor. Prob. Appl., t. 22, 1977, p. 236-247. Zbl0378.60008MR517490
  54. [54] J.E. Yukich, Uniform exponential bounds for the normalized empirical process, 1985. Preprint. Zbl0624.60047MR871846

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.