On the distance between the empirical process and its concave majorant in a monotone regression framework

Cécile Durot; Anne-Sophie Tocquet

Annales de l'I.H.P. Probabilités et statistiques (2003)

  • Volume: 39, Issue: 2, page 217-240
  • ISSN: 0246-0203

How to cite

top

Durot, Cécile, and Tocquet, Anne-Sophie. "On the distance between the empirical process and its concave majorant in a monotone regression framework." Annales de l'I.H.P. Probabilités et statistiques 39.2 (2003): 217-240. <http://eudml.org/doc/77760>.

@article{Durot2003,
author = {Durot, Cécile, Tocquet, Anne-Sophie},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {isotonic regression; Brownian motion; parabolic drift; least concave majorant; central limit theorem},
language = {eng},
number = {2},
pages = {217-240},
publisher = {Elsevier},
title = {On the distance between the empirical process and its concave majorant in a monotone regression framework},
url = {http://eudml.org/doc/77760},
volume = {39},
year = {2003},
}

TY - JOUR
AU - Durot, Cécile
AU - Tocquet, Anne-Sophie
TI - On the distance between the empirical process and its concave majorant in a monotone regression framework
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 2
SP - 217
EP - 240
LA - eng
KW - isotonic regression; Brownian motion; parabolic drift; least concave majorant; central limit theorem
UR - http://eudml.org/doc/77760
ER -

References

top
  1. [1] H.D. Brunk, Estimation of isotonic regression, in: Nonparametric Techniques in Statistical Inference, Cambridge Univ. Press, 1970, pp. 177-195. MR277070
  2. [2] C. Durot, Sharp asymptotics for isotonic regression, Probab. Theory Related Fields122 (2002) 222-240. Zbl0992.60028MR1894068
  3. [3] P. Groeneboom, G. Hooghiemstra, H.P. Lopuhaä, Asymptotic normality of the l1-error of the grenander estimator, Ann. Statist.27 (1999) 1316-1347. Zbl1105.62342MR1740109
  4. [4] J. Huang, J.A. Wellner, Estimation of a monotone density or monotone hazard under random censoring, Scand. J. Statist.22 (1995) 3-33. Zbl0827.62032MR1334065
  5. [5] J. Kiefer, J. Wolfowitz, Asymptotically minimax estimation of concave and convexe distribution functions, Z. Wahrsch. Verw. Gebiete34 (1976) 73-85. Zbl0354.62035MR397974
  6. [6] V.N. Kulikov, H.P. Lopuhaä, The limit process of the difference between the empirical distribution function and its concave majorant, Manuscript in preparation, 2002. Zbl1106.60034
  7. [7] B.L.S. Prakasa Rao, Estimation of a unimodal density, Sankhya Ser. A31 (1969) 23-36. Zbl0181.45901MR267677
  8. [8] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer-Verlag, 1991. Zbl0731.60002MR1083357
  9. [9] A.I. Sakhanenko, Estimates in the invariance principle, Trudy. Inst. Mat. Sibirsk. Otdel (1972) 27-44. Zbl0585.60044MR821751
  10. [10] Y. Wang, The limit distribution of the concave majorant of an empirical distribution function, Statist. Probab. Letters20 (1994) 81-84. Zbl0801.62017MR1294808

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.