Contre-exemple dans le théorème central limite fonctionnel pour les champs aléatoires réels

Mohamed El Machkouri; Dalibor Volný

Annales de l'I.H.P. Probabilités et statistiques (2003)

  • Volume: 39, Issue: 2, page 325-337
  • ISSN: 0246-0203

How to cite

top

El Machkouri, Mohamed, and Volný, Dalibor. "Contre-exemple dans le théorème central limite fonctionnel pour les champs aléatoires réels." Annales de l'I.H.P. Probabilités et statistiques 39.2 (2003): 325-337. <http://eudml.org/doc/77765>.

@article{ElMachkouri2003,
author = {El Machkouri, Mohamed, Volný, Dalibor},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {metric entropy; invariance principle; ergodic dynamical system; positive entropy; entropy condition with inclusion; stationary martingale-difference random field; functional central limit theorem},
language = {fre},
number = {2},
pages = {325-337},
publisher = {Elsevier},
title = {Contre-exemple dans le théorème central limite fonctionnel pour les champs aléatoires réels},
url = {http://eudml.org/doc/77765},
volume = {39},
year = {2003},
}

TY - JOUR
AU - El Machkouri, Mohamed
AU - Volný, Dalibor
TI - Contre-exemple dans le théorème central limite fonctionnel pour les champs aléatoires réels
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 2
SP - 325
EP - 337
LA - fre
KW - metric entropy; invariance principle; ergodic dynamical system; positive entropy; entropy condition with inclusion; stationary martingale-difference random field; functional central limit theorem
UR - http://eudml.org/doc/77765
ER -

References

top
  1. [1] K.S. Alexander, R. Pyke, A uniform central limit theorem for set-indexed partial-sum processes with finite variance, Ann. Probab.14 (1986) 582-597. Zbl0595.60027MR832025
  2. [2] R.F. Bass, Law of the iterated logarithm for set-indexed partial sum processes with finite variance, Z. Wahrsch. Verw. Gebiete70 (1985) 591-608. Zbl0575.60034MR807339
  3. [3] A.K. Basu, C.C.Y. Dorea, On functional central limit theorem for stationary martingale random fields, Acta. Math. Hung.33 (1979) 307-316. Zbl0431.60037MR542479
  4. [4] D. Chen, A uniform central limit theorem for nonuniform φ-mixing random fields, Ann. Probab.19 (1991) 636-649. Zbl0735.60034
  5. [5] J.P. Conze, Entropie d'un groupe abélien de transformations, Z. Wahrsch. Verw. Geb.25 (1972) 11-30. Zbl0261.28015MR335754
  6. [6] J. Dedecker, Principes d'invariances pour les champs aléatoires stationnaires, PhD thesis, Université Paris XI Orsay, 1998. 
  7. [7] J. Dedecker, Exponential inequalities and functional central limit theorems for random fields, ESAIM, 2001, to appear. Zbl1003.60033MR1875665
  8. [8] R.L. Dobrushin, B.S. Nahapetian, Strong convexity of pressure for lattice systems of classical statistical physics, Teoret. Mat. Fiz.20 (1974) 223-234. Zbl0311.60063MR468967
  9. [9] M.D. Donsker, An invariance principle for certain probability limit theorems, Mem. Amer. Math. Soc.6 (1951) 1-12. Zbl0042.37602MR40613
  10. [10] R.M. Dudley, Sample functions of the Gaussian process, Ann. Probab.1 (1973) 66-103. Zbl0261.60033MR346884
  11. [11] C.M. Goldie, P.E. Greenwood, Variance of set-indexed sums of mixing random variables and weak convergence of set-indexed processes, Ann. Probab.14 (1986) 817-839. Zbl0604.60032MR841586
  12. [12] Y. Katznelson, B. Weiss, Commuting measure-preserving transformations, Israel J. Math.12 (1972) 161-173. Zbl0239.28014MR316680
  13. [13] J. Kuelbs, The invariance principle for a lattice of random variables, Ann. Math. Statist.39 (1968) 382-389. Zbl0164.46401MR226713
  14. [14] M. El Machkouri, Kahane–Khintchine inequalities and functional central limit theorem for stationary random fields, Stoch. Proc. Appl.120 (2002) 285-299. Zbl1075.60506
  15. [15] B. Nahapetian, A.N. Petrosian, Martingale-difference Gibbs random fields and central limit theorem, Ann. Acad. Sci. Fenn., Series A-I Math.17 (1992) 105-110. Zbl0789.60043MR1162153
  16. [16] D.S. Ornstein, B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, Journal d'Analyse Mathématique48 (1987) 1-141. Zbl0637.28015MR910005
  17. [17] D. Pollard, Empirical Processes: Theory and Applications, NSF-CBMS Regional Conference Series in Probability and Statistics, IMS-ASA, Hayward-Alexandria, 1990. Zbl0741.60001MR1089429
  18. [18] R. Pyke, A uniform central limit theorem for partial-sum processes indexed by sets, London Math. Soc. Lect. Notes Series79 (1983) 219-240. Zbl0497.60030MR696030
  19. [19] M.J. Wichura, Inequalities with applications to the weak convergence of random processes with multi-dimensional time parameters, Ann. Math. Statist.40 (1969) 681-687. Zbl0214.17701MR246359

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.