Exponential inequalities and functional central limit theorems for random fields

Jérôme Dedecker

ESAIM: Probability and Statistics (2001)

  • Volume: 5, page 77-104
  • ISSN: 1292-8100

Abstract

top
We establish new exponential inequalities for partial sums of random fields. Next, using classical chaining arguments, we give sufficient conditions for partial sum processes indexed by large classes of sets to converge to a set-indexed brownian motion. For stationary fields of bounded random variables, the condition is expressed in terms of a series of conditional expectations. For non-uniform φ -mixing random fields, we require both finite fourth moments and an algebraic decay of the mixing coefficients.

How to cite

top

Dedecker, Jérôme. "Exponential inequalities and functional central limit theorems for random fields." ESAIM: Probability and Statistics 5 (2001): 77-104. <http://eudml.org/doc/104280>.

@article{Dedecker2001,
abstract = {We establish new exponential inequalities for partial sums of random fields. Next, using classical chaining arguments, we give sufficient conditions for partial sum processes indexed by large classes of sets to converge to a set-indexed brownian motion. For stationary fields of bounded random variables, the condition is expressed in terms of a series of conditional expectations. For non-uniform $\phi $-mixing random fields, we require both finite fourth moments and an algebraic decay of the mixing coefficients.},
author = {Dedecker, Jérôme},
journal = {ESAIM: Probability and Statistics},
keywords = {functional central limit theorem; stationary random fields; moment inequalities; exponential inequalities; mixing; metric entropy; chaining},
language = {eng},
pages = {77-104},
publisher = {EDP-Sciences},
title = {Exponential inequalities and functional central limit theorems for random fields},
url = {http://eudml.org/doc/104280},
volume = {5},
year = {2001},
}

TY - JOUR
AU - Dedecker, Jérôme
TI - Exponential inequalities and functional central limit theorems for random fields
JO - ESAIM: Probability and Statistics
PY - 2001
PB - EDP-Sciences
VL - 5
SP - 77
EP - 104
AB - We establish new exponential inequalities for partial sums of random fields. Next, using classical chaining arguments, we give sufficient conditions for partial sum processes indexed by large classes of sets to converge to a set-indexed brownian motion. For stationary fields of bounded random variables, the condition is expressed in terms of a series of conditional expectations. For non-uniform $\phi $-mixing random fields, we require both finite fourth moments and an algebraic decay of the mixing coefficients.
LA - eng
KW - functional central limit theorem; stationary random fields; moment inequalities; exponential inequalities; mixing; metric entropy; chaining
UR - http://eudml.org/doc/104280
ER -

References

top
  1. [1] K.S. Alexander and R. Pyke, A uniform central limit theorem for set-indexed partial-sum processes with finite variance. Ann. Probab. 14 (1986) 582-597. Zbl0595.60027MR832025
  2. [2] K. Azuma, Weighted sums of certain dependent random fields. Tôhoku Math. J. (2) 19 (1967) 357-367. Zbl0178.21103MR221571
  3. [3] R.F. Bass, Law of the iterated logarithm for set-indexed partial sum processes with finite variance. Z. Wahrsch. Verw. Gebiete. 70 (1985) 591-608. Zbl0575.60034MR807339
  4. [4] A.K. Basu and C.C.Y. Dorea, On functional central limit theorem for stationary martingale random fields. Acta Math. Hungar. 33 (1979) 307-316. Zbl0431.60037MR542479
  5. [5] P.J. Bickel and M.J. Wichura, Convergence criteria for multiparameter stochastic processes and some applications. Ann. Math. Statist. 42 (1971) 1656-1670. Zbl0265.60011MR383482
  6. [6] R. Bradley, A caution on mixing conditions for random fields. Statist. Probab. Lett. 8 (1989) 489-491. Zbl0697.60054MR1040812
  7. [7] D. Chen, A uniform central limit theorem for nonuniform φ -mixing random fields. Ann. Probab. 19 (1991) 636-649. Zbl0735.60034MR1106280
  8. [8] J. Dedecker, A central limit theorem for stationary random fields. Probab. Theory Related Fields 110 (1998) 397-426. Zbl0902.60020MR1616496
  9. [9] J. Dedecker and E. Rio, On the functional central limit theorem for stationary processes. Ann. Inst. H. Poincaré Probab. Statist. 36 (2000) 1-34. Zbl0949.60049MR1743095
  10. [10] R.L. Dobrushin, The description of a random field by means of conditional probabilities and conditions of its regularity. Theory Probab. Appl. 13 (1968) 197-224. Zbl0184.40403MR231434
  11. [11] R.L. Dobrushin and S. Shlosman, constructive criterion for the uniqueness of Gibbs fields, Statistical physics and dynamical systems. Birkhauser (1985) 347-370. Zbl0569.46042MR821306
  12. [12] P. Doukhan, Mixing: Properties and Examples. Springer, Berlin, Lecture Notes in Statist. 85 (1994). Zbl0801.60027MR1312160
  13. [13] P. Doukhan, J. León and F. Portal, Vitesse de convergence dans le théorème central limite pour des variables aléatoires mélangeantes à valeurs dans un espace de Hilbert. C. R. Acad. Sci. Paris Sér. I Math. 298 (1984) 305-308. Zbl0557.60006MR765429
  14. [14] R.M. Dudley, Sample functions of the Gaussian process. Ann. Probab. 1 (1973) 66-103. Zbl0261.60033MR346884
  15. [15] C.M. Goldie and P.E. Greenwood, Variance of set-indexed sums of mixing random variables and weak convergence of set-indexed processes. Ann. Probab. 14 (1986) 817-839. Zbl0604.60032MR841586
  16. [16] C.M. Goldie and G.J. Morrow, Central limit questions for random fields, Dependence in probability and statistics. Progr. Probab. Statist. 11 (1986) 275-289. Zbl0605.60029MR991627
  17. [17] P. Hall and C.C. Heyde, Martingale Limit Theory and its Applications. Academic Press, New York (1980). Zbl0462.60045MR624435
  18. [18] Y. Higuchi, Coexistence of infinite ( * )-clusters II. Ising percolation in two dimensions. Probab. Theory Related Fields 97 (1993) 1-33. Zbl0794.60102MR1240714
  19. [19] E. Laroche, Hypercontractivité pour des systèmes de spins de portée infinie. Probab. Theory Related Fields 101 (1995) 89-132. Zbl0820.60082MR1314176
  20. [20] M. Ledoux and M. Talagrand, Probability in Banach Spaces. Springer, New York (1991). Zbl0748.60004MR1102015
  21. [21] P. Lezaud, Chernoff-type bound for finite Markov chains. Ann. Appl. Probab. 8 (1998) 849-867. Zbl0938.60027MR1627795
  22. [22] F. Martinelli and E. Olivieri, Approach to Equilibrium of Glauber Dynamics in the One Phase Region. I. The Attractive Case. Comm. Math. Phys. 161 (1994) 447-486. Zbl0793.60110MR1269387
  23. [23] M. Peligrad, A note on two measures of dependence and mixing sequences. Adv. in Appl. Probab. 15 (1983) 461-464. Zbl0508.60033MR698829
  24. [24] G. Perera, Geometry of d and the central limit theorem for weakly dependent random fields. J. Theoret. Probab. 10 (1997). Zbl0884.60022MR1468394
  25. [25] I.F. Pinelis, Optimum bounds for the distribution of martingales in Banach spaces. Ann. Probab. 22 (1994) 1679-1706. Zbl0836.60015MR1331198
  26. [26] E. Rio, Covariance inequalities for strongly mixing processes. Ann. Inst. H. Poincaré 29 (1993) 587-597. Zbl0798.60027MR1251142
  27. [27] E. Rio, Théorèmes limites pour les suites de variables aléatoires faiblement dépendantes. Springer, Berlin, Collect. Math. Apll. 31 (2000). Zbl0944.60008
  28. [28] P.M. Samson, Inégalités de concentration de la mesure pour des chaînes de Markov et des processus φ -mélangeants, Thèse de doctorat de l’université Paul Sabatier (1998). 
  29. [29] R.H. Schonmann and S.B. Shlosman, Complete Analyticity for 2D Ising Completed. Comm. Math. Phys. 170 (1995) 453-482. Zbl0821.60097MR1334405
  30. [30] R.J. Serfling, Contributions to Central Limit Theory For Dependent Variables. Ann. Math. Statist. 39 (1968) 1158-1175. Zbl0176.48004MR228053

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.