Exponential inequalities and functional central limit theorems for random fields
ESAIM: Probability and Statistics (2001)
- Volume: 5, page 77-104
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] K.S. Alexander and R. Pyke, A uniform central limit theorem for set-indexed partial-sum processes with finite variance. Ann. Probab. 14 (1986) 582-597. Zbl0595.60027MR832025
- [2] K. Azuma, Weighted sums of certain dependent random fields. Tôhoku Math. J. (2) 19 (1967) 357-367. Zbl0178.21103MR221571
- [3] R.F. Bass, Law of the iterated logarithm for set-indexed partial sum processes with finite variance. Z. Wahrsch. Verw. Gebiete. 70 (1985) 591-608. Zbl0575.60034MR807339
- [4] A.K. Basu and C.C.Y. Dorea, On functional central limit theorem for stationary martingale random fields. Acta Math. Hungar. 33 (1979) 307-316. Zbl0431.60037MR542479
- [5] P.J. Bickel and M.J. Wichura, Convergence criteria for multiparameter stochastic processes and some applications. Ann. Math. Statist. 42 (1971) 1656-1670. Zbl0265.60011MR383482
- [6] R. Bradley, A caution on mixing conditions for random fields. Statist. Probab. Lett. 8 (1989) 489-491. Zbl0697.60054MR1040812
- [7] D. Chen, A uniform central limit theorem for nonuniform -mixing random fields. Ann. Probab. 19 (1991) 636-649. Zbl0735.60034MR1106280
- [8] J. Dedecker, A central limit theorem for stationary random fields. Probab. Theory Related Fields 110 (1998) 397-426. Zbl0902.60020MR1616496
- [9] J. Dedecker and E. Rio, On the functional central limit theorem for stationary processes. Ann. Inst. H. Poincaré Probab. Statist. 36 (2000) 1-34. Zbl0949.60049MR1743095
- [10] R.L. Dobrushin, The description of a random field by means of conditional probabilities and conditions of its regularity. Theory Probab. Appl. 13 (1968) 197-224. Zbl0184.40403MR231434
- [11] R.L. Dobrushin and S. Shlosman, constructive criterion for the uniqueness of Gibbs fields, Statistical physics and dynamical systems. Birkhauser (1985) 347-370. Zbl0569.46042MR821306
- [12] P. Doukhan, Mixing: Properties and Examples. Springer, Berlin, Lecture Notes in Statist. 85 (1994). Zbl0801.60027MR1312160
- [13] P. Doukhan, J. León and F. Portal, Vitesse de convergence dans le théorème central limite pour des variables aléatoires mélangeantes à valeurs dans un espace de Hilbert. C. R. Acad. Sci. Paris Sér. I Math. 298 (1984) 305-308. Zbl0557.60006MR765429
- [14] R.M. Dudley, Sample functions of the Gaussian process. Ann. Probab. 1 (1973) 66-103. Zbl0261.60033MR346884
- [15] C.M. Goldie and P.E. Greenwood, Variance of set-indexed sums of mixing random variables and weak convergence of set-indexed processes. Ann. Probab. 14 (1986) 817-839. Zbl0604.60032MR841586
- [16] C.M. Goldie and G.J. Morrow, Central limit questions for random fields, Dependence in probability and statistics. Progr. Probab. Statist. 11 (1986) 275-289. Zbl0605.60029MR991627
- [17] P. Hall and C.C. Heyde, Martingale Limit Theory and its Applications. Academic Press, New York (1980). Zbl0462.60045MR624435
- [18] Y. Higuchi, Coexistence of infinite ()-clusters II. Ising percolation in two dimensions. Probab. Theory Related Fields 97 (1993) 1-33. Zbl0794.60102MR1240714
- [19] E. Laroche, Hypercontractivité pour des systèmes de spins de portée infinie. Probab. Theory Related Fields 101 (1995) 89-132. Zbl0820.60082MR1314176
- [20] M. Ledoux and M. Talagrand, Probability in Banach Spaces. Springer, New York (1991). Zbl0748.60004MR1102015
- [21] P. Lezaud, Chernoff-type bound for finite Markov chains. Ann. Appl. Probab. 8 (1998) 849-867. Zbl0938.60027MR1627795
- [22] F. Martinelli and E. Olivieri, Approach to Equilibrium of Glauber Dynamics in the One Phase Region. I. The Attractive Case. Comm. Math. Phys. 161 (1994) 447-486. Zbl0793.60110MR1269387
- [23] M. Peligrad, A note on two measures of dependence and mixing sequences. Adv. in Appl. Probab. 15 (1983) 461-464. Zbl0508.60033MR698829
- [24] G. Perera, Geometry of and the central limit theorem for weakly dependent random fields. J. Theoret. Probab. 10 (1997). Zbl0884.60022MR1468394
- [25] I.F. Pinelis, Optimum bounds for the distribution of martingales in Banach spaces. Ann. Probab. 22 (1994) 1679-1706. Zbl0836.60015MR1331198
- [26] E. Rio, Covariance inequalities for strongly mixing processes. Ann. Inst. H. Poincaré 29 (1993) 587-597. Zbl0798.60027MR1251142
- [27] E. Rio, Théorèmes limites pour les suites de variables aléatoires faiblement dépendantes. Springer, Berlin, Collect. Math. Apll. 31 (2000). Zbl0944.60008
- [28] P.M. Samson, Inégalités de concentration de la mesure pour des chaînes de Markov et des processus -mélangeants, Thèse de doctorat de l’université Paul Sabatier (1998).
- [29] R.H. Schonmann and S.B. Shlosman, Complete Analyticity for 2D Ising Completed. Comm. Math. Phys. 170 (1995) 453-482. Zbl0821.60097MR1334405
- [30] R.J. Serfling, Contributions to Central Limit Theory For Dependent Variables. Ann. Math. Statist. 39 (1968) 1158-1175. Zbl0176.48004MR228053